Communication
Figure 2. Upper NMR trace: reaction of 1b with Tf2O (1.1 eq.) in d2-DCM after 5 minutes reaction time. The multiplet at 4.8 ppm is assigned to the cation 3b
(the only other species present in considerable amounts is the desired oxazolium product). Lower NMR trace: reaction of 1a with Tf2O (1.1 eq.) in d2-DCM
after 5 minutes reaction time.
We noted that the products structurally resemble münch-
Keywords: Amide activation · Oxazolium ·
nones[14] to some extent. The latter are well-known for their
Chemoselectivity · Cycloaddition · Synthesis design
ready participation in interesting (3+2) cycloadditions.[14] In the
event, we achieved a reductive formal [2+2]-cycloaddition of
oxazolium salt 2b with dimethyl acetylenedicarboxylate
(DMDA) leading to product 6b in good yield and as a single
diastereoisomer (Scheme 4).[9] The NOESY NMR spectrum of
compound 6 is consistent with the stereochemistry shown in
Scheme 4.
[1] A. Greenberg, C. M. Breneman, J. F. Liebman, The Amide Linkage: Struc-
tural Significance in Chemistry, Biochemistry and Materials Science, Wiley,
New York, 2003.
[2] For reviews on amide activation see: a) D. Kaiser, A. Bauer, M. Lemmerer,
N. Maulide, Chem. Soc. Rev. 2018, 47, 7899–7925; b) D. Kaiser, N. Maulide,
J. Org. Chem. 2016, 81, 4421–4428; c) V. Pace, W. Holzer, B. Olofsson, Adv.
Synth. Catal. 2014, 356, 3697–3736; d) P.-Q. Huang, Acta Chim. Sinica
2018, 76, 357–365; e) T. Sato, M. Yoritate, H. Tajima, N. Chida, Org. Biomol.
Chem. 2018, 16, 3864–3875.
[3] O. Wallach, Justus Liebigs Ann. Chem. 1877, 184, 1–127.
[4] a) R. Robinson, J. Chem. Soc. Trans. 1909, 95, 2167–2174; b) S. Gabriel,
Ber. Dtsch. Chem. Ges. 1910, 43, 134–138; c) H. H. Wasserman, F. J. Vinick,
J. Org. Chem. 1973, 38, 3407–2408. For a variation of the Robinson-Ga-
briel synthesis with Tf2O:; d) A. Thalhammer, J. Mecinović, C. J. Schofield,
Tetrahedron Lett. 2009, 50, 1045–1047.
[5] The Robinson-Gabriel reaction in total synthesis: a) M. C. Bagley, K. E.
Bashford, C. L. Hesketh, C. J. Moody, J. Am. Chem. Soc. 2000, 122, 3301–
3313; b) K. C. Nicolaou, J. Hao, M. V. Reddy, P. B. Rao, G. Rassias, S. A.
Snyder, X. Huang, D. Y.-K. Chen, W. E. Brenzovich, N. Giuseppone, A.
O'Brate, P. Giannakakou, J. Am. Chem. Soc. 2004, 126, 12897–12906; c)
K. C. Nicolaou, S. A. Snyder, X. Huang, K. B. Simonsen, A. E. Koumbis, A.
Bigot, J. Am. Chem. Soc. 2004, 126, 10162–10173; d) P. Wipf, S. Venkatra-
man, J. Org. Chem. 1996, 61, 6517–6522.
[6] For a summary of variations of the Robinson-Gabriel reaction see: I. Tur-
chi, The Chemistry of Heterocyclic Compounds, Oxazoles. Wiley, New York,
2009.
[7] a) E. Vedejs, J. W. Grissom, J. Org. Chem. 1988, 539, 1876–1882; b) S.
Swaleh, J. Liebscher, J. Org. Chem. 2002, 67, 3184–3193.
[8] a) J. Zhang, J. Fu, X. Su, X. Qin, M. Zhao, M. Shi, Chem. Commun. 2012,
48, 9625–9627; b) J. Zhang, J. Fu, X. Su, X. Wang, S. Song, M. Shi, Chem.
Asian J. 2013, 558–555.
[9] E. Vedejs, J. Wisniewski Grissom, J. Am. Chem. Soc. 1986, 108, 6433–6434.
[10] a) P. Adler, C. J. Teskey, D. Kaiser, M. Holy, H. H. Sitte, N. Maulide, Nat.
Chem. 2019, 11, 329–334; b) T. Stopka, P. Adler, G. Hagn, H. Zhang, V.
Tona, N. Maulide, Synthesis 2019, 51, 194–202; c) C. J. Teskey, P. Adler,
C. R. Gonçalves, N. Maulide, Angew. Chem. Int. Ed. 2019, 58, 447–451;
Angew. Chem. 2019, 131, 456; d) B. Peng, D. Geerdink, C. Farès, N. Maul-
Scheme 4. Possible further transformation of one oxazolium salt.
Conclusion
Herein we reported that bicyclic, alkoxyoxazolium salts can be
readily prepared from simple proline- and pipecolic acid deriva-
tives. Mechanistic experiments highlighted a deleterious role
for the base. The products lend themselves to synthetic elabo-
ration by cycloaddition reactions.
Acknowledgments
Support of this research by the Erasmus + Program (fellowship
to E.S.) and the Austrian Science Fund (FWF, Grant P30226) is
gratefully acknowledged. We thank the University of Vienna for
continued support of our research programs.
Eur. J. Org. Chem. 0000, 0–0
3
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim