10.1002/adsc.201801207
Advanced Synthesis & Catalysis
References
[1] a) Ed: S. Brꢀse, In Privileged Scaffolds in Medicinal
Chemistry: Design, Synthesis, Evaluation; Royal
Society of Chemistry (RSC): Cambridge, U.K., 2015;
b) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L.
Aceꢁa, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev.
2016, 116, 422-518; c) M. F. Khan, M. M. Alam, G.
Verma, W. Akhtar, M. Akhter, M. Shaquiquzzaman,
Eur. J. Med. Chem. 2016, 120, 170−201; d) Y.-H. Joo,
J. M. Shreeve, J. Am. Chem. Soc. 2010, 132, 15081–
15090; e) T. M. Klapötke, J. Stierstorfer, A. U. Wallek,
Chem. Mater. 2008, 20, 4519–4530.
Scheme 6. Post-functionalization.
Finally, the product 3a exhibited a great potential for
further synthetic manipulations, notably as valuable
precursors for the synthesis of the azido S-
perfluoroalkyl sulfoximine 6 and the N-alkenyl
sulfoximine 7, respectively in quantitative and
moderate yields (Scheme 6). These last experiments
demonstrate the synthetic usefulness of our
methodology to access functionally diverse N-
sulfoximine derivatives.
In summary, we have developed a practical and
mild procedure for the synthesis of hitherto unknown
vicinal chloro S-fluoroalkyl sulfoximine derivatives
in good to excellent yields under ruthenium
photocatalysis from easily available alkenes. This
photoredox-initiated procedure displayed good
efficiency regardless the aromatic or aliphatic nature
of the alkene partners and the structure of the
fluorinated chain. Control experiments ruled out the
formation of cationic intermediate in the course of the
reaction and supported that the transformation
proceeded via an ATRA mechanism. Finally,
applications of the methodology to functional-group
transformations have been illustrated for the synthesis
of 2-azido sulfoximines and N-alkenyl sulfoximines.
[2] For selected reviews on Ullman cross-coupling; a) C.
Sambiagio, S. P. Marsden, A. J. Blacker, P. C.
McGowan, Chem. Soc. Rev. 2014, 43, 3525−3550; b)
D. S. Surry, S. L. Buchwald, Chem. Sci. 2010, 1,
13−31; c) G. Evano, N. Blanchard, M. Toumi, Chem.
Rev. 2008, 108, 3054−3131. For selected reviews on
Pd-catalyzed C-N cross-coupling; d) Y. Park, Y. Kim,
S. Chang, Chem. Rev. 2017, 117, 9247–9301; e) P.
Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116,
12564−12649; f) J. Bariwal, E. Van der Eycken, Chem.
Soc. Rev. 2013, 42, 9283−9303. For a review on C-N
bond construction through radical species: g) J. Luo,
W.-T. Wei, Adv. Synth. Catal. 2018, 360, 2076–2086.
[3] For selected reviews on photoredox catalysis: a) C. K.
Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322–5363; b) M. H. Shaw, J. Twilton, D.
W. C. MacMillan, J. Org. Chem., 2016, 81, 6898–
6926; c) N. A. Romero, D. A. Nicewicz, Chem. Rev.,
2016, 116, 10075–10166; d) For a review on the dual
catalysis photoredox/nickel: J. Twilton, C. Le, P. Zhang,
M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat.
Rev. Chem. 2017, 1, 0052.
[4] For reviews on the generation of nitrogen-centered
radicals by photocatalytic processes: a) M. D. Kꢀrkꢀs,
ACS Catal. 2017, 7, 4999−5022. For reviews on the
generation of nitrogen-centered radicals by other
processes: b) T. Xiong, Q. Zhang, Chem. Soc. Rev.
2016, 45, 3069−3087; c) S. Z. Zard, Chem. Soc. Rev.
2008, 37, 1603–1618; d) Q. Qin, D. Ren, S. Yu, Org.
Biomol. Chem. 2015, 13, 10295−10298.
Experimental Section
General procedure
Preparation of N-functionalized sulfoximines (3a-3t). In
a glass tube, the selected alkene derivative (0.6 mmol, 2
equiv.), dry potassium acetate (58 mg, 0.6 mmol, 2 equiv.)
and the Ru(bpy)3(PF6)2 (5 mg, 2 mol%) were successively
added to a solution of the selected N-chlorosulfoximine
(0.3 mmol, 1 equiv.) in dry acetonitrile (0.6 mL). The
reactor was flushed with argon and sealed. The reaction
was stirred under visible light irradiation (Blue LED strip)
at ambient temperature for the appropriate time. Then the
reaction mixture was concentrated in vacuo and the residue
was purified by flash chromatography (silica gel,
appropriate mixture of hexane/ethyl acetate or pure
toluene) to afford the corresponding N-functionalized
sulfoximines as a mixture of diastereomers (d.r. between
1.2:1 and 1:1).
[5] For biological properties: a) U. Lücking, Angew. Chem.
Int. Ed. 2013, 52, 2–12; b) N. Nishimura, M. H.
Norman, L. Liu, K. C. Yang, K. S. Ashton, M. D.
Bartberger, S. Chmait, J. Chen, R. Cupples, C. Fotsch,
J. Helmering, S. R. Jordan, R. K. Kunz, L. D.
Pennington, S. F. Poon, A. Siegmund, G. Sivits, D. J.
Lloyd, C. Hale, D. J. St. Jean, J. Med. Chem. 2014, 57,
3094–3116; c) S. J. Park, H. Baars, S. Mersmann, H.
Buschmann, J. M. Baron, P. M. Amann, K. Czaja, H.
Hollert, K. Bluhm, R. Redelstein, C. Bolm,
ChemMedChem 2013, 8, 217-220; d) M. Frings, C.
Bolm, A. Blum, C. Gnamm, Eur. J. Med. Chem. 2017,
126, 225-245; e) C. M. M. Hendriks, J. Hartkamp, S.
Wiezorek, A.-D. Steinkamp, G. Rossetti, B. Lüscher, C.
Bolm, Bioorg. Med. Chem. Lett. 2017, 27, 2659-2662;
f) C. Bolm, D. Müller, C. Dalhoff, C. P. R.
Hackenberger, E. Weinhold, Bioorg. Med. Chem. Lett.
Acknowledgements
AP is grateful to Labex Charmmmat for the postdoctoral
fellowship. We gratefully thank CNRS and the French Fluorine
Network (GIS fluor) for financial support. The authors thank
Guillaume Dagousset and Elsa Anselmi for helpful discussions.
4
This article is protected by copyright. All rights reserved.