ChemComm
Communication
in the hydrogel (Fig. 1B); in this sense, hydrogel clearance kinetics
in vivo may also be engineered.
In conclusion, we have prepared injectable, hydrazone cross-
linked hydrogels based on POEGMA that exhibit the same
favourable biological properties of conventional PEG-based
hydrogels (i.e. facilitating minimal protein adsorption, no sig-
nificant cellular adhesion, and no significant chronic inflam-
matory responses in vivo) while offering the significant
advantages of facile synthesis, rapid in situ gelation following
injection, tunable mechanics, tunable degradation times, and
excellent control over chemical composition and functionaliz-
ability. These results suggest the potential of these POEGMA-
based hydrogels as a platform for the design of engineered
hydrogels for a variety of biomedical applications now served by
conventional PEG hydrogels.
The NSERC 20/20 Ophthalmic Research Network is grate-
fully acknowledged for financial support.
Fig. 2 Biological properties of injectable POEGMA hydrogels (based on
0
PO100H30 and PO100A30 15 wt%). (A and B) Adsorption of BSA (A) and
Notes and references
1 (a) C.-C. Lin and K. S. Anseth, Pharm. Res., 2009, 26, 631–643;
(b) J. L. Drury and D. J. Mooney, Biomaterials, 2003, 24, 4337–4351;
(c) N. A. Peppas, J. Z. Hilt, A. Khademhosseini and R. Langer, Adv.
Mater., 2006, 18, 1345–1360.
fibrinogen (B). (C–E) Fibroblast adhesion after 7 days to a polystyrene
control (C), POEGMA hydrogel (D) and an RGD-functionalized hydrogel (E).
(F and G) Acute (F) and chronic (G) in vivo response.
2 J. V. Jokerst, T. Lobovkina, R. N. Zare and S. S. Gambhir, Nano-
medicine, 2011, 6, 715–728.
3 C. R. Nuttelman, M. A. Rice, A. E. Rydholm, C. N. Salinas, D. N. Shah
and K. S. Anseth, Prog. Polym. Sci., 2008, 33, 167–179.
tissue culture polystyrene interfaces (Fig. 2C) after 7 days of incuba-
tion. The presence of reactive functional groups in the POEGMA
hydrogel precursor polymers facilitates facile additional tuning of
cell–hydrogel interactions if desired. For example, PO100A30-RGD
precursors (average of 1 RGD sequence per chain) were synthesized
to prepare POEGMA hydrogels containing 1.2 mM RGD, a compar-
able concentration to other RGD functionalized hydrogels reported
previously.13 At this concentration, RGD promotes an increase in
3T3 mouse fibroblast adhesion to the injectable POEGMA hydrogel,
as 91 ꢂ 10 cells per mm2 (n = 4) adhere (Fig. 2E) and subsequently
proliferate (ESI,† Fig. S7). Note that the average degree of RGD
functionalization can be increased independently of the cross-link
density simply by functionalizing the precursors with a larger initial
fraction of aldehyde groups. Thus, the injectable POEGMA hydro-
gels reported herein can either suppress or support cell adhesion,
consistent with other PEG-based hydrogels reported in literature
that are typically non-injectable and significantly more limited in
terms of compositional diversity.
4 See for example: (a) M. Malkoch, R. Vestberg, N. Gupta,
L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao,
C. W. Frank, K. Kingsbury and C. J. Hawker, Chem. Commun.,
2006, 2774–2776; (b) J. D. McCall and K. S. Anseth, Biomacro-
molecules, 2012, 13, 2410–2417; (c) A. A. Aimetti, A. J. Machen and
K. S. Anseth, Biomaterials, 2009, 30, 6048–6054; (d) B. D. Polizzotti,
B. D. Fairbanks and K. S. Anseth, Biomacromolecules, 2008, 9,
1084–1087; (e) K. C. Koehler, K. S. Anseth and C. N. Bowman,
Biomacromolecules, 2013, 14, 538–547; ( f ) G. N. Grover, J. Lam,
T. H. Nguyen, T. Segura and H. D. Maynard, Biomacromolecules,
2012, 13, 3013–3017.
5 B. L. Farrugia, K. Kempe, U. S. Schubert, R. Hoogenboom and
T. R. Dargaville, Biomacromolecules, 2013, 14, 2724–2732.
6 (a) M. Luzon, C. Boyer, C. Peinado, T. Corrales, M. Whittaker,
L. E. I. Tao and T. P. Davis, J. Polym. Sci., Part A, 2010, 48,
2783–2792; (b) A. H. Soeriyadi, G.-Z. Li, S. Slavin, M. W. Jones,
C. M. Amos, C. R. Becer, M. R. Whittaker, D. M. Haddleton, C. Boyer
and T. P. Davis, Polym. Chem., 2011, 2, 815–822; (c) J. K. Oh, K. Min
and K. Matyjaszewski, Macromolecules, 2006, 39, 3161–3167; (d) J.-F.
Lutz and A. Hoth, Macromolecules, 2006, 39, 893–896.
¨
7 J.-F. Lutz, J. Andrieu, S. Uzgu¨n, C. Rudolph and S. Agarwal, Macro-
The in vivo response to the POEGMA precursors and hydrogel
was evaluated by subcutaneous injection using a double-barrel
syringe in BALB/c mice. Hydrogels were formed in situ in the
subcutaneous space of the mice with minimal leukocytotic infil-
tration at the hydrogel-tissue interface (o100 cells per mm2),
suggesting a relatively mild acute inflammatory response 3 days
post-injection (Fig. 2F). The POEGMA hydrogel fully degraded
after one month (Fig. 2G), with no signs of chronic inflammation
(i.e. macrophages, foreign body giant cells, granulation tissue) or
fibrous capsule formation observed histopathologically. This
result suggests that injectable POEGMA hydrogels are well-
tolerated in vivo, again analogous to conventional PEG hydrogels.
It should be emphasized that in vitro degradation studies suggest
that the degradation lifetime of the POEGMA hydrogels can be
tuned based on the number of cross-linkable groups incorporated
molecules, 2007, 40, 8540–8543.
8 (a) J. Lei, C. Mayer, V. Freger and M. Ulbricht, Macromol. Mater. Eng.,
´
2013, 298, 967–980; (b) R. Parıs and I. Quijada-Garrido, Eur. Polym.
J., 2009, 45, 3418–3425; (c) J. A. Yoon, T. Kowalewski,
K. Matyjaszewski, C. Gayathri and R. R. Gil, Macromolecules, 2010,
43, 4791–4797; (d) J. A. Yoon, T. Kowalewski and K. Matyjaszewski,
Macromolecules, 2011, 44, 2261–2268; (e) J.-F. Lutz, K. Weichenhan,
¨
O. Akdemir and A. Hoth, Macromolecules, 2007, 40, 2503–2508;
( f ) N. Fechler, N. Badi, K. Schade, S. Pfeifer and J.-F. Lutz, Macro-
molecules, 2009, 42, 33–36.
9 (a) M. Patenaude and T. Hoare, ACS Macro Lett., 2012, 1, 409–413;
(b) M. Patenaude and T. Hoare, Biomacromolecules, 2012, 13,
369–378; (c) T. Ito, Y. Yeo, C. B. Highley, E. Bellas and D. S.
Kohane, Biomaterials, 2007, 28, 3418–3426; (d) D. A. Ossipov and
J. Hilborn, Macromolecules, 2006, 39, 1709–1718.
10 G. Pasut and F. M. Veronese, Prog. Polym. Sci., 2007, 32, 933–961.
11 (a) Y. Hou, C. A. Schoener, K. R. Regan, D. Munoz-Pinto, M. S. Hahn
and M. A. Grunlan, Biomacromolecules, 2010, 11, 648–656;
(b) Y. C. Chung and Y. H. Chiu, Med. Biol. Eng., 2009, 29, 320–324;
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.