10.1039/c39890000997
T. Sudhakar Rao and Colin B. Reese describe a new method for synthesizing 2,3'-anhydrothymidine (3), a key intermediate in the production of the antiretroviral drug 3'-azido-3'-deoxythymidine (AZT). The authors discovered that heating thymidine (2) with an excess of diphenyl sulphite in dimethylacetamide solution in the presence of a catalytic amount of 1-methylimidazole at 156°C for 45 minutes yields 2,3'-anhydrothymidine (3) in approximately 65% yield. This method is advantageous over previous procedures, such as the use of 2-chloro-1-diethylamino-1,1,2-trifluoroethane, due to the greater accessibility of diphenyl sulphite. The synthesized 2,3'-anhydrothymidine (3) can then be converted into AZT by reacting with lithium azide, achieving a 71% yield of AZT. This streamlined synthesis offers a more efficient route for the production of AZT, which is crucial for the treatment of AIDS patients.