10.1016/j.bmcl.2011.05.083
The research focuses on the efficient synthesis of 3-O-thia-cPAs (4a–d), sulfur analogues of cyclic phosphatidic acid (cPA), with the key step being an intramolecular Arbuzov reaction to construct the cyclic thiophosphate moiety. The synthetic route allows for the production of 4a–d in just four steps from commercially available glycidol. Preliminary biological experiments were conducted to assess the inhibitory effect of 4a–d on autotaxin (ATX), an enzyme involved in controlling the concentration of lysophosphatidic acid (LPA), which affects cell proliferation and cancer cell metastasis. The study used various reactants including glycidol, thioacetic acid, methanol, 2,4-dinitrobenzenesulfenyl chloride, and phosphite, among others, to synthesize the target compounds. The chemical structures of the synthesized compounds were confirmed using NMR (1H NMR, 31P NMR, and HH-COSY) and mass spectrometry. The biological activity was evaluated through ATX inhibition assays, which showed that 3-O-thia-cPAs exhibited a similar inhibitory effect on ATX as the original cPA, with the potency order being 2-O-ccPA 3c > 3-O-thia-cPAs 4a–d > cPA 2a.