10.1016/s0022-328x(97)00456-7
The study investigates the formation of dimeric and trimeric molybdenum(II) complexes containing 2-substituted 3-bonded butadienyl bridging ligands. The starting material used is [MoCI(CO)2(@-CH2(COCI)C=CH2)phen] (phen = 1,10-phenanthroline) (1). When 1 reacts with 1,2-ethanediol or N,N'-diethylethylenediamine in a 2:1 mole ratio, dimeric complexes [MoCI(CO)2(@-CH/(COACH2)C=CH2)phen]2 are formed, where A represents the substituent group (A = O for ester, A = NEt for amide). Reactions with hydroquinone or 1,4-phenylenediamine yield monomeric complexes [MoCI(CO)2(@-CH2(COA)C=CH2)phen], while dimeric complexes are isolated from reactions involving 4,4'-ethylenedianiline or p-xylylenediamine. Attempts to prepare a novel complex bridged by three linked amide substituted butadienyl groups using diethylenetriamine were unsuccessful. However, reaction of 1 with triethanolamine or tris(2-aminoethyl)amine in a 3:1 mole ratio gives trimeric complexes [MoCI(CO)2(~/a-CH2(COACH2CH2)C=CH2)phen]3 N (A = O, NH) in good yield. The study establishes conditions for the formation of these complexes and examines the boundaries of dimer and trimer formation using various bifunctional and trifunctional reagents.