Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1115-22-6

Post Buying Request

1115-22-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1115-22-6 Usage

General Description

Dimethyl aspartic acid is a chemical compound that is derived from aspartic acid, an amino acid found in many proteins. It is composed of two methyl groups attached to the aspartic acid molecule, hence the name dimethyl aspartic acid. This chemical has various industrial applications, including its use as a building block in the production of polymers and plastics. Additionally, it has been used in the formulation of certain cosmetics and personal care products. In the human body, dimethyl aspartic acid is involved in the metabolism of amino acids and the production of energy. Overall, this compound has a range of uses in both industrial and biological processes.

Check Digit Verification of cas no

The CAS Registry Mumber 1115-22-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,1,1 and 5 respectively; the second part has 2 digits, 2 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 1115-22:
(6*1)+(5*1)+(4*1)+(3*5)+(2*2)+(1*2)=36
36 % 10 = 6
So 1115-22-6 is a valid CAS Registry Number.
InChI:InChI=1/C6H11NO4/c1-7(2)4(6(10)11)3-5(8)9/h4H,3H2,1-2H3,(H,8,9)(H,10,11)

1115-22-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name DIMETHYL ASPARTIC ACID

1.2 Other means of identification

Product number -
Other names L-Dimethylamino-bernsteinsaeure

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1115-22-6 SDS

1115-22-6Downstream Products

1115-22-6Relevant articles and documents

-

Barker,A.C.,Battersby,A.R.

, p. 135 - 136 (1967)

-

Metal-catalyzed reductive deamination of glutamic acid to bio-based dimethyl glutarate and methylamines

De Schouwer, Free,Cuypers, Thomas,Claes, Laurens,De Vos, Dirk E.

supporting information, p. 1866 - 1876 (2017/06/09)

Glutamic acid is a promising renewable platform molecule which is abundantly available in biomass waste streams; it is also efficiently manufactured by fermentation. Here we report the reductive deamination of glutamic acid to bio-based dimethyl glutarate and methylamines. In order to recycle nitrogen in an industrially relevant co-product, glutamic acid was modified to N,N-dimethylglutamic acid by a mild reductive alkylation with Pd/C. Subsequently, selective C-N hydrogenolysis in methanol resulted in dimethyl glutarate and trimethylamine. A wide screening of transition metals (Pt, Pd, Rh and Ru) immobilized on various supports showed that the highest yields of dimethyl glutarate were obtained with Pt/TiO2. An FTIR study and kinetic experiments on metal-loaded and unloaded supports demonstrate that the interplay between the metal and the moderate acidity of the support results in the excellent C-N hydrogenolysis activity and selectivity. Finally, reaction parameter optimization resulted in 81% yield of dimethyl glutarate with 1 wt% Pt/TiO2 at 225 °C, 30 bar H2 after 8 h.

Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples

Guo, Kevin,Ji, Chengjie,Li, Liang

, p. 8631 - 8638 (2008/03/15)

One of the challenges associated with metabolome profiling in complex biological samples is to generate quantitative information on the metabolites of interest. In this work, a targeted metabolome analysis strategy is presented for the quantification of amine-containing metabolites. A dimethylation reaction is used to introduce a stable isotopic tag onto amine-containing metabolites followed by LC-ESI MS analysis. This labeling reaction employs a common reagent, formaldehyde, to label globally the amine groups through reductive animation. The performance of this strategy was investigated in the analysis of 20 amino acids and 15 amines by LC-ESI MS. It is shown that the labeling chemistry is simple, fast (13C-dimethylation does not show any isotope effect on either RPLC or HILIC LC, indicating that 13C-labeling is a preferred approach for relative quantification of amine-containing metabolites in different samples. The isotopically labeled 35 amine-containing analogues were found to be stable and proved to be effective in overcoming matrix effects in both relative and absolute quantification of these analytes present in a complicated sample, human urine. Finally, the characteristic mass difference provides additional structural information that reveals the existence of primary or secondary amine functional groups in amine-containing metabolites. As an example, for a human urine sample, a total of 438 pairs of different amine-containing metabolites were detected, at signal-to-noise ratios of greater than 10, by using the labeling strategy in conjunction with RP LC-ESI Fourier-transform ion cyclotron resonance MS.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1115-22-6