Welcome to LookChem.com Sign In|Join Free

CAS

  • or

114026-76-5

Post Buying Request

114026-76-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

114026-76-5 Usage

General Description

The chemical (2R,3R)-α2,α2,α3,α3-tetraphenyl-1,4-Dioxaspiro[4.5]decane-2,3-diMethanol is a compound with a complex molecular structure. It is a spiropentane derivative with two hydroxyl (OH) functional groups attached to the second and third carbon atoms. It also contains four phenyl (C6H5) groups attached to different positions on the molecule. This chemical is commonly used in organic synthesis and pharmaceutical research due to its unique structure and potential pharmacological properties. Its complex structure and functional groups make it a valuable compound for the development of new drugs and chemical processes.

Check Digit Verification of cas no

The CAS Registry Mumber 114026-76-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,4,0,2 and 6 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 114026-76:
(8*1)+(7*1)+(6*4)+(5*0)+(4*2)+(3*6)+(2*7)+(1*6)=85
85 % 10 = 5
So 114026-76-5 is a valid CAS Registry Number.

114026-76-5Relevant articles and documents

Phosphite-Catalyzed C?H Allylation of Azaarenes via an Enantioselective [2,3]-Aza-Wittig Rearrangement

Motaleb, Abdul,Rani, Soniya,Das, Tamal,Gonnade, Rajesh G.,Maity, Pradip

supporting information, p. 14104 - 14109 (2019/09/06)

A phosphite-mediated [2,3]-aza-Wittig rearrangement has been developed for the regio- and enantioselective allylic alkylation of six-membered heteroaromatic compounds (azaarenes). The nucleophilic phosphite adducts of N-allyl salts undergo a stereoselective base-mediated aza-Wittig rearrangement and dissociation of the chiral phosphite for overall C?H functionalization of azaarenes. This method provides efficient access to tertiary and quaternary chiral centers in isoquinoline, quinoline, and pyridine systems, tolerating a broad variety of substituents on both the allyl part and azaarenes. Catalysis with chiral phosphites is also demonstrated with synthetically useful yields and enantioselectivities.

Novel tartrate-derived guanidine-catalyzed highly enantio- and diastereoselective Michael addition of 3-substituted oxindoles to nitroolefins

Zou, Liwei,Bao, Xiaoze,Ma, Yuanyuan,Song, Yuming,Qu, Jingping,Wang, Baomin

supporting information, p. 5760 - 5762 (2014/05/20)

The Michael addition of 3-substituted oxindoles to nitroolefins was catalyzed by a novel tartrate-derived guanidine in high yield with excellent diastereo- and enantioselectivity. This method showed an extraordinarily broad substrate scope in terms of both reaction partners. the Partner Organisations 2014.

Design and evaluation of inclusion resolutions, based on readily available host compounds

Mueller, Simona,Afraz, Marcel Cyrus,De Gelder, Rene,Ariaans, Gerry J. A.,Kaptein, Bernard,Broxterman, Quirinus B.,Bruggink, Alle

, p. 1082 - 1096 (2007/10/03)

Resolution of enantiomers through selective crystallisation of diastereomeric inclusion compounds can extend the scope of traditional racemate resolution beyond salt forming compounds. To assess the practical value of this approach the literature was carefully screened and promising results were checked. Also an extensive range of new inclusion hosts suitable for resolution processes, derived from simple hydroxy- and amino acids were prepared and tested. Several techniques, including the Dutch Resolution approach utilizing mixtures of resolving agents, were applied. Over 70 potential resolving agents were tested in combinations with 34 racemates (over 100 racemates if literature results are included). Reproducibility of literature results was found to be problematic. Also the number of successful new resolutions found was very limited: only two efficient resolutions out of 1200 combinations of racemate and resolving agent tested in over 10.000 experiments! Crystal studies of representative combinations of resolving agents and inclusion compounds revealed some of the causes for the low rate of success in inclusion resolution. Compared to diastereomeric salts, the absence of strong electrostatic interactions substantially reduces the probability of forming crystals including both components. Molecular structure features allowing formation of intricate intramolecular and intermolecular H-bond networks were found to be responsible for inclusion crystal formation, and for the quality of the ensuing resolution through selective diastereomer crystallisation, in the successful cases. Whereas diastereomeric salt resolution continues to be of scientific and industrial interest, inclusion resolution should be viewed as of very limited scope; useful in specific instances, but lacking the wide applicability of classical resolution. Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 114026-76-5