Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1145-73-9

Post Buying Request

1145-73-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1145-73-9 Usage

Health Hazard

4-dimethylaminostilbene (XIV), results in widening the target tissue spectrum; XIV induces tumors in the liver, mammary gland, and ear duct. Mice are much more resistant than rats to the carcinogenic activity of both amino-azo dyes and aminostilbenes.

Safety Profile

Poison by ingestion and intraperitoneal routes. Questionable carcinogen with experimental carcinogenic and tumorigenic data. Mutation data reported. When heated to decomposition it emits toxic fumes of NOx

Check Digit Verification of cas no

The CAS Registry Mumber 1145-73-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,1,4 and 5 respectively; the second part has 2 digits, 7 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 1145-73:
(6*1)+(5*1)+(4*4)+(3*5)+(2*7)+(1*3)=59
59 % 10 = 9
So 1145-73-9 is a valid CAS Registry Number.

1145-73-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-(DIMETHYLAMINO)STILBENE

1.2 Other means of identification

Product number -
Other names stilbenyl-n,n-dimethylamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1145-73-9 SDS

1145-73-9Relevant articles and documents

Mukaiyama,Imaoka

, p. 413 (1978)

Palladium supported aminobenzamide modified silica coated superparamagnetic iron oxide as an applicable nanocatalyst for Heck cross-coupling reaction

Fatahi, Yousef,Ghaempanah, Aram,Ma?mani, Leila,Mahdavi, Mohammad,Bahadorikhalili, Saeed

, (2021/01/26)

An applicable palladium-based nanocatalyst was constructed through the immobilization of palladium onto 2-aminobenzamide functionalized silica coated superparamagnetic iron oxide magnetic nanoparticles. The nanocatalyst (named as Pd@ABA@SPIONs@SiO2) was characterized by several characterization methods, including scanning electron microscope (SEM), transmission electron microscopy (TEM), vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma (ICP), and X-ray photoelectron spectroscopy (XPS) analyses. Microscopy results showed that the nanoparticles are spherical in shape with 20–25 nm size. The size of the nanoparticles was confirmed by the DLS method. The superparamagnetic nature of the catalyst was confirmed by the VSM method. The successful functionalization of SPIONs@SiO2 was confirmed by FT-IR spectroscopy. The presence of palladium in the structure of the nanocatalyst was illustrated by XRD and EDS analysis. Also using XPS technique, the oxidation state of palladium in Pd@ABA@SPIONs@SiO2 was determined zero before and after the catalyst was applied in Mizoroki-Heck reaction. Several aryl halides and alkenes were reacted in the presence of the nanocatalyst and formed the corresponding products in high isolated yields. The nanocatalyst showed very good reusability and did not decrease its activity after 10 sequential runs. Density functional theory (DFT) calculation was performed to provide a mechanism for the reaction and confirmed the role of the palladium catalyst in the reaction function.

Expedient Synthesis of N-Methyl- and N-Alkylamines by Reductive Amination using Reusable Cobalt Oxide Nanoparticles

Senthamarai, Thirusangumurugan,Murugesan, Kathiravan,Natte, Kishore,Kalevaru, Narayana V.,Neumann, Helfried,Kamer, Paul C. J.,Jagadeesh, Rajenahally V.

, p. 1235 - 1240 (2018/02/09)

N-Methyl- and N-alkylamines represent important fine and bulk chemicals that are extensively used in both academic research and industrial production. Notably, these structural motifs are found in a large number of life-science molecules and play vital roles in regulating their activities. Therefore, the development of convenient and cost-effective methods for the synthesis and functionalization of amines by using earth-abundant metal-based catalysts is of scientific interest. In this regard, herein we report an expedient reductive amination process for the selective synthesis of N-methylated and N-alkylated amines by using nitrogen-doped, graphene-activated nanoscale Co3O4-based catalysts. Starting from inexpensive and easily accessible nitroarenes or amines and aqueous formaldehyde or aldehydes in the presence of formic acid, this cost-efficient reductive amination protocol allows the synthesis of various N-methyl- and N-alkylamines, amino acid derivatives, and existing drug molecules.

N,N′-Mono substituted acyclic thioureas: Efficient ligands for the palladium catalyzed Heck reaction of deactivated aryl bromides

Keesara, Srinivas,Parvathaneni, Saiprathima,Mandapati, Mohan Rao

, p. 6769 - 6772 (2015/05/05)

A series of N,N′-mono substituted acyclic thiourea ligands are found to be highly active phosphine-free catalysts for palladium catalyzed Heck reaction of aryl iodides and bromides with olefins. We have achieved high turnover numbers for aryl iodides with olefins (TONs up to 970,000 for the reaction of iodobenzene with styrene).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1145-73-9