1174718-09-2Relevant articles and documents
Design, synthesis and evaluation of novel thienopyridazine derivatives as Chk1/2 inhibitors
Liu, Hanyu,Qian, Feng,Shen, Dadong,Wang, Pu
, (2022/03/07)
In order to search for novel checkpoint kinase 1/2 (Chk1) inhibitors, we have designed and synthesized a series of new compounds incorporating thienopyridazine core. Bioevaluation showed that compounds 10j, 10i, 13e and 10o exhibited relatively good inhibitory activity. Notably, compound 10o displayed high selectivity against a panel of kinases and inhibited Chk1/2 signaling pathway stimulated by DNA damage drugs in cellular level. Molecular docking of 10o to the ATP-binding site of Chk1 kinase domain indicated the existence of polar interactions between 10o and the ATP-ribose-binding residues of Chk1. In mouse HT-29 xenografts, a synergistic effect was observed. Co-treatment by CPT-11 and 10o significantly diminished the tumor volume, indicating the great potential of 10o as a candidate of Chk1/2 inhibitor.
THIENOPYRIDAZINE COMPOUNDS, THEIR PREPARATIONS, PHARMACEUTICAL COMPOSITIONS AND USES
-
, (2010/11/03)
The present invention relates to thienopyridazine compounds of formula (I), their pharmaceutically acceptable salts or hydrates, wherein R1 and R2 are independently H or C1-4 alkyl, R3 is a saturated or unsaturated 5- or 6- membered ring containing N, S or O, or its optical isomers, R4 is a halophenyl monosubstituted or disubstituted at any position. The present invention provides the preparation methods of these compounds, pharmaceutical compositions containing these compounds and the uses of these compounds, particularly in treating cancer.
Novel Compounds and Therapeutic Use Thereof for Protein Kinase Inhibition
-
Page/Page column 21, (2009/12/02)
Novel compound having the following formula: Also disclosed are a pharmaceutical compositions comprising the same, methods for treating cancer using the same, and methods for the synthesis of the same. The novel compounds of the present invention are found to inhibit protein kinases, especially Checkpoint kinase Chk1/Chk2.