119904-34-6Relevant articles and documents
Homochiral BINAPDA-Zr-MOF for Heterogeneous Asymmetric Cyanosilylation of Aldehydes
Jin, Fa-Zheng,Zhao, Chen-Chen,Ma, Hui-Chao,Chen, Gong-Jun,Dong, Yu-Bin
, p. 9253 - 9259 (2019/07/08)
A new homochiral BINAPDA-Zr-MOF was prepared by a new chiral organic linker of (R)-4,4′-(6,6′-dichloro-2,2′-diethoxyl-[1,1′-binaphthalene]-4,4′-diyl)dibenzoic acid (R-L) and ZrCl4 under solvothermal conditions. Its structure was determined by P
Controlled Exchange of Achiral Linkers with Chiral Linkers in Zr-Based UiO-68 Metal-Organic Framework
Tan, Chunxia,Han, Xing,Li, Zijian,Liu, Yan,Cui, Yong
supporting information, p. 16229 - 16236 (2018/11/27)
The development of highly robust heterogeneous catalysts for broad asymmetric reactions has always been a subject of interest, but it remains a synthetic challenge. Here we demonstrated that highly stable metal-organic frameworks (MOFs) with potentially acid-labile chiral catalysts can be synthesized via postsynthetic exchange. Through a one- or two-step ligand exchange, a series of asymmetric metallosalen catalysts with the same or different metal centers are incorporated into a Zr-based UiO-68 MOF to form single- and mixed-M(salen) linker crystals, which cannot be accomplished by direct solvothermal synthesis. The resulting MOFs have been characterized by a variety of techniques including single-crystal X-ray diffraction, N2 sorption, CD, and SEM/TEM-EDS mapping. The single-M(salen) linker MOFs are active and efficient catalysts for asymmetric cyanosilylation of aldehydes, ring-opening of epoxides, oxidative kinetic resolution of secondary alcohols, and aminolysis of stilbene oxide, and the mixed-M(salen) linker variants are active for sequential asymmetric alkene epoxidation/epoxide ring-opening reactions. The chiral MOF catalysts are highly enantioselective and completely heterogeneous and recyclable, making them attractive catalysts for eco-friendly synthesis of fine chemicals. This work not only advances UiO-type MOFs as a new platform for heterogeneous asymmetric catalysis in a variety of syntheses but also provides an attractive strategy for designing robust and versatile heterogeneous catalysts.
Multivariate Metal-Organic Frameworks as Multifunctional Heterogeneous Asymmetric Catalysts for Sequential Reactions
Xia, Qingchun,Li, Zijian,Tan, Chunxia,Liu, Yan,Gong, Wei,Cui, Yong
supporting information, p. 8259 - 8266 (2017/06/28)
The search for versatile heterogeneous catalysts with multiple active sites for broad asymmetric transformations has long been of great interest, but it remains a formidable synthetic challenge. Here we demonstrate that multivariate metal-organic frameworks (MTV-MOFs) can be used as an excellent platform to engineer heterogeneous catalysts featuring multiple and cooperative active sites. An isostructural series of 2-fold interpenetrated MTV-MOFs that contain up to three different chiral metallosalen catalysts was constructed and used as efficient and recyclable heterogeneous catalysts for a variety of asymmetric sequential alkene epoxidation/epoxide ring-opening reactions. Interpenetration of the frameworks brings metallosalen units adjacent to each other, allowing cooperative activation, which results in improved efficiency and enantioselectivity over the sum of the individual parts. The fact that manipulation of molecular catalysts in MTV-MOFs can control the activities and selectivities would facilitate the design of novel multifunctional materials for enantioselective processes.
The first porphyrin-salen based chiral metal-organic framework for asymmetric cyanosilylation of aldehydes
Li, Jiawei,Ren, Yanwei,Qi, Chaorong,Jiang, Huanfeng
supporting information, p. 8223 - 8226 (2017/07/24)
The first porphyrin-salen based chiral metal-organic framework (ps-CMOF) constructed by judiciously incorporating metalloporphyrin and metallosalen struts into one MOF structure is reported, which can serve as an effective heterogeneous catalyst for the a
High-Throughput Preparation of Optically Active Cyanohydrins Mediated by Lipases
Thomas, Juliana Christina,Aggio, Bruno Bernardi,Marques de Oliveira, Alfredo Ricardo,Piovan, Leandro
, p. 5964 - 5970 (2016/12/26)
Cyanohydrins are versatile compounds with high applicability in organic synthesis; they are used as starting materials for the synthesis of other chemical targets with high industrial added value. Lipase-mediated kinetic resolution reactions are a promising route for the synthesis of optically active cyanohydrins. These reactions can be carried out through the acylation of cyanohydrins or the deacylation of cyanohydrin esters, with different biocatalysts and under different reaction conditions. Unfortunately, depending on the substrate structure, long reaction times can be required to achieve suitable enantiomeric excesses. In this context, we present a high-throughput protocol for the production of optically active cyanohydrins in continuous-flow mode. The products were obtained with moderate to good enantioselectivity (E values from 8 up to >200) and with productivity values from 2.4 to 8.7 times higher in continuous-flow mode than in batch mode. Moreover, the reaction times were reduced from hours in batch mode to minutes in continuous-flow mode.
Chemoenzymatic flow cascade for the synthesis of protected mandelonitrile derivatives
Delville, Marille M. E.,Koch, Kaspar,Van Hest, Jan C. M.,Rutjes, Floris P. J. T.
supporting information, p. 1634 - 1638 (2015/03/05)
A chemoenzymatic two-step cascade process, with both steps having incompatible reaction conditions, was successfully performed in continuous flow. The chemoenzymatic aqueous formation of cyanohydrins was integrated with a subsequent organic phase protection step in a single flow process utilising a membrane-based phase separation module. The wider applicability of our setup was demonstrated with the synthesis of nine protected cyanohydrin derivatives, all obtained in good yields and high to excellent enantioselectivity.
Direct and Post-Synthesis Incorporation of Chiral Metallosalen Catalysts into Metal-Organic Frameworks for Asymmetric Organic Transformations
Xi, Weiqin,Liu, Yan,Xia, Qingchun,Li, Zijian,Cui, Yong
supporting information, p. 12581 - 12585 (2015/09/01)
Two chiral porous metal-organic frameworks (MOFs) were constructed from [VO(salen)]-derived dicarboxylate and dipyridine bridging ligands. After oxidation of VIV to VV, they were found to be highly effective, recyclable, and reusable
Enantioselective cyanosilylation of aldehydes catalyzed by novel camphor derived Schiff bases-titanium(IV) complexes
B?ocka, Ewelina,Bosiak, Mariusz J.,We?niak, Miros?aw,Ludwiczak, Agnieszka,Wojtczak, Andrzej
, p. 554 - 562 (2014/05/06)
Five tridentate Schiff bases have been prepared from (1R,2S,3R,4S)-3-amino- 1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol and salicylaldehydes. X-ray structure investigation revealed differences in their molecular conformation, and their titanium(IV) complexes
Asymmetric cyanohydrin synthesis using an aluminium(salan) complex
North, Michael,Stewart, Emma L.,Young, Carl
, p. 1218 - 1225,8 (2020/09/09)
The asymmetric addition of trimethylsilyl cyanide to aldehydes catalysed by chiral metal(salan) complexes has been investigated. Salan complexes of titanium and vanadium displayed only low catalytic activity, but a bimetallic aluminium(salan) complex gave
Cooperative thiourea-Bronsted acid organocatalysis: Enantioselective cyanosilylation of aldehydes with TMSCN
Zhang, Zhiguo,Lippert, Katharina M.,Hausmann, Heike,Kotke, Mike,Schreiner, Peter R.
, p. 9764 - 9776 (2012/01/03)
We report a new thiourea - Bronsted acid cooperative catalytic system for the enantioselective cyanosilylation of aldehydes with yields up to 90% and enantioselectivities up to 88%. The addition of an achiral acid was found to be crucial for high asymmetric induction. Mechanistic investigations using a combination of NMR, ESI-MS, and density functional theory computations (including solvent corrections) at the M06/6-31G(d,p) level of theory suggest that the key catalytic species results from the cooperative interaction of bifunctional thioureas and an achiral acid that form well-defined chiral hydrogen-bonding environments.