Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1210-12-4

Post Buying Request

1210-12-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1210-12-4 Usage

Chemical Properties

solid

Uses

Different sources of media describe the Uses of 1210-12-4 differently. You can refer to the following data:
1. Anthracene-9-carbonitrile was used to study the mechanism of charge separation within phenothiazine (PTZH) or phenoxazine (PXZH), and 9-cyanoanthracene(electron acceptor). Also it has been used to study the fluorescence excitation spectra of this compound .
2. 9-Anthracenecarbonitrile was used to study the mechanism of charge separation within phenothiazine (PTZH) or phenoxazine (PXZH), and 9-cyanoanthracene(electron acceptor).

General Description

The fluorescence excitation spectra of 9-anthracenecarbonitrile has been studied.

Purification Methods

Crystallise the nitrile from EtOH or toluene, and sublime it in a vacuum in the dark under N2 [Ebied et al. J Chem Soc, Faraday Trans 1 76 2170 1980, Kikuchi et al. J Phys Chem 91 574 1987]. [Beilstein 9 I 304.]

Check Digit Verification of cas no

The CAS Registry Mumber 1210-12-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,2,1 and 0 respectively; the second part has 2 digits, 1 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 1210-12:
(6*1)+(5*2)+(4*1)+(3*0)+(2*1)+(1*2)=24
24 % 10 = 4
So 1210-12-4 is a valid CAS Registry Number.
InChI:InChI=1/C15H9N/c16-10-15-13-7-3-1-5-11(13)9-12-6-2-4-8-14(12)15/h1-9H

1210-12-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B22652)  Anthracene-9-carbonitrile, 98%   

  • 1210-12-4

  • 5g

  • 260.0CNY

  • Detail
  • Alfa Aesar

  • (B22652)  Anthracene-9-carbonitrile, 98%   

  • 1210-12-4

  • 25g

  • 931.0CNY

  • Detail
  • Alfa Aesar

  • (B22652)  Anthracene-9-carbonitrile, 98%   

  • 1210-12-4

  • 100g

  • 3554.0CNY

  • Detail

1210-12-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name 9-Anthrracenecarbonitrile

1.2 Other means of identification

Product number -
Other names anthracene-9-carbonitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1210-12-4 SDS

1210-12-4Relevant articles and documents

-

Meek,Dann

, p. 6677 (1955)

-

-

Field,L. et al.

, p. 1983 - 1987 (1961)

-

Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

Munirathinam, Rajesh,Ricciardi, Roberto,Egberink, Richard J.M.,Huskens, Jurriaan,Holtkamp, Michael,Wormeester, Herbert,Karst, Uwe,Verboom, Willem

, p. 1698 - 1704 (2013)

Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.

Preparation of 14C-labeled multiwalled carbon nanotubes for biodistribution investigations

Georgin, Dominique,Czarny, Bertrand,Botquin, Magali,Mayne-L'Hermite, Martine,Pinault, Mathieu,Bouchet-Fabre, Brigitte,Carriere, Marie,Poncy, Jean-Luc,Quang, Chau,Maximilien, Remy,Dive, Vincent,Taran, Frederic

, p. 14658 - 14659 (2009)

(Figure Presented) A new method allowing the 14C-labeling of carboxylic acid functions of carbon nanotubes is described. The key step of the labeling process is a decarbonylation reaction that has been developed and optimized with the help of a screening method. The optimized process has been successfully applied to multiwalled carbon nanotubes (MWNTs), and the corresponding 14C-labeled nanotubes were used to investigate their in vivo behavior. Preliminary results obtained after i.v. contamination of rats revealed liver as the main target organ. Radiolabeling of NTs with a long-life radioactive nucleus like 14C, coupled to a highly sensitive autoradiographic method, that provides a unique detection threshold, will make it possible to determine for a long time period whether or not NTs remain in any organs after animal exposure.

Grundmann,Frommfeld

, p. 2077,2078 (1965)

Gore et al.

, p. 227 (1969)

Beugelmans et al.

, p. 377 (1976)

-

Gore,P.H. et al.

, p. 2927 - 2929 (1979)

-

Preparation of (1R,1′R)-1,1′-(anthracene-9,10-diyl)bis(2,2,2-trifluoroethanamine): a chiral diamine with low basicity

Estivill, Carla,Mendizabal, Julen,Virgili, Albert,Monteagudo, Eva,Flor, Teresa,Sánchez-Ferrando, Francisco,Alvarez-Larena, Angel,Piniella, Juan F.

, p. 171 - 176 (2009)

A new chiral diamine with low basicity was synthesized in enantiopure form. (1R,1′R)-1,1′-(Anthracene-9,10-diyl)bis(2,2,2-trifluoroethanamine) was obtained by means of several stereochemically controlled reactions. The structures of the title compound and several intermediates were studied.

CuO-catalyzed conversion of arylacetic acids into aromatic nitriles with K4Fe(CN)6 as the nitrogen source

Ren, Yun-Lai,Shen, Zhenpeng,Tian, Xinzhe,Xing, Ai-Ping,Zhao, Zhe

, (2020/10/26)

Readily available CuO was demonstrated to be effective as the catalyst for the conversion of arylacetic acids to aromatic nitriles with non-toxic and inexpensive K4Fe(CN)6 as the nitrogen source via the complete cleavage of the C[tbnd]N triple bond. The present method allowed a series of arylacetic acids including phenylacetic acids, naphthaleneacetic acids, 2-thiopheneacetic acid and 2-furanacetic acid to be converted into the targeted products in low to high yields.

Copper-Catalyzed One-Pot Synthesis of Quinazolinones from 2-Nitrobenzaldehydes with Aldehydes: Application toward the Synthesis of Natural Products

Pal, Shantanu,Sahoo, Subrata

, p. 18067 - 18080 (2021/12/06)

A novel, efficient, and atom-economical approach for the construction of quinazolinones from 2-nitrobenzaldehydes has been unveiled via copper-catalyzed nitrile formation, hydrolysis, and reduction in one pot for the first time. In this reaction, urea is used as a source of nitrogen for nitrile formation, hydrazine hydrate is used for both the reduction of the nitro group and the hydrolysis of nitrile, and atmospheric oxygen is used as the sole oxidant. The method portrays a wide substrate scope with good functional group tolerances. Moreover, this method was applied for the synthesis of schizocommunin, tryptanthrin, phaitanthrin-A, phaitanthrin-B, and 8H-quinazolino[4,3-b]quinazolin-8-one.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1210-12-4