121138-01-0Relevant articles and documents
Photoinduced Palladium-Catalyzed Dicarbofunctionalization of Terminal Alkynes
Yang, Zhen,Koenigs, Rene M.
supporting information, p. 3694 - 3699 (2021/02/01)
Herein, a conceptually distinct approach was developed that allowed for the dicarbofunctionalization of alkynes at room temperature using simple, bench-stable alkyl iodides and a second molecule of alkyne as coupling partner. Specifically, the photochemical activation of palladium complexes enabled this strategic dicarbofunctionalization via addition of alkyl radicals from secondary and tertiary alkyl iodides and formation of an intermediate palladium vinyl complex that could undergo subsequent Sonogashira reaction with a second alkyne molecule. This alkylation–alkynylation sequence allowed the one-step synthesis of 1,3-enynes including heteroarenes and biologically active compounds with high efficiency without exogenous photosensitizers or oxidants and now opens up pathways towards cascade reactions via photochemical palladium catalysis.
Manganese-Mediated Direct Functionalization of Hantzsch Esters with Alkyl Iodides via an Aromatization-Dearomatization Strategy
Liu, Xian-Guan,Dong, Ci-Shuang,Li, Fei,Zhang, Bo
supporting information, p. 4002 - 4007 (2021/05/26)
We report, for the first time, manganese-mediated direct functionalization of the Hantzsch esters with readily accessible alkyl iodides through an aromatization-dearomatization strategy. Applying this protocol, a library of valuable 4-alkyl-1,4-dihydropyridines were facilely afforded in good yields. This simple and practical reaction proceeds under visible-light irradiation at room temperature and displays high functional-group compatibility. Additionally, the method is applicable for gram-scale synthesis and late-stage functionalization of complex molecules.
Containing zinc binding moiety based EGFR tyrosine kinase inhibitors
-
Paragraph 0171; 0173-0175, (2016/10/17)
Belonging to the technical field of medicine, the invention in particular relates to a zinc binding group-containing quinazolinyl EGFR (epidermal growth factor receptor) tyrosine kinase inhibitor shown as general formula (I), its deuterated compounds, pha
A transition-metal-free Heck-type reaction between alkenes and alkyl iodides enabled by light in water
Liu, Wenbo,Li, Lu,Chen, Zhengwang,Li, Chao-Jun
supporting information, p. 6170 - 6174 (2015/06/08)
A transition-metal-free coupling protocol between various alkenes and non-activated alkyl iodides has been developed by using photoenergy in water for the first time. Under UV irradiation and basic aqueous conditions, various alkenes efficiently couple with a wide range of non-activated alkyl iodides. A tentative mechanism, which involves an atom transfer radical addition process, for the coupling is proposed.
Combination of NH2OH·HCl and NaIO4: an effective reagent for molecular iodine-free regioselective 1,2-difunctionalization of olefins and easy access of terminal acetals
Chakraborty, Nirnita,Santra, Sougata,Kundu, Shrishnu Kumar,Hajra, Alakananda,Zyryanov, Grigory V.,Majee, Adinath
, p. 56780 - 56788 (2015/07/15)
We have demonstrated a new application of our oxidizing reagent, a combination of NH2OH·HCl and NaIO4, in the first generalized regioselective 1,2-difunctionalization of olefins. It is a general method for the preparation of β-iodo-β′-hydroxy ethers, β-iodo ethers, β-iodohydrin, and β-iodo acetoxy compounds using different reaction media. The reactions are highly regioselective, always affording Markovnikov's type addition products. The methodology is also applicable for the easy access of terminal acetals. Molecular iodine-free synthesis, room temperature reaction conditions, high yields, use of less expensive reagents, mild reaction conditions, broad applicability of nucleophiles, and applicability for gram-scale synthesis are the notable advantages of this present protocol.
Sterically controlled alkylation of arenes through iridium-catalyzed C-H borylation
Robbins, Daniel W.,Hartwig, John F.
supporting information, p. 933 - 937 (2013/02/25)
Complementary chemistry: A one-pot method for the site-selective alkylation of arenes controlled by steric effects is reported. The process occurs through Ir-catalyzed C-H borylation, followed by Pd- or Ni-catalyzed coupling with alkyl electrophiles. This selectivity complements that of the typical Friedel-Crafts alkylation; meta-selective alkylation of a broad range of arenes with various electronic properties and functional groups occurs in good yield with high site selectivity. Copyright
Br+ and I+ transfer from the halonium ions of adamantylideneadamantane to acceptor olefins. Halocyclization of 1,ω-alkenols and alkenoic acids proceeds via reversibly formed intermediates
Neverov,Brown
, p. 962 - 968 (2007/10/03)
The kinetics of the transfer of X+ from the bromonium and iodonium ions of adamantylideneadamantane (1-Br+ and 1-I+) to some 1,ω-alkenols and alkenoic acids in ClCH2CH2Cl at 25°C was investigated. In all cases, the expected products of halocyclization were observed. For the iodonium ion transfer the reaction kinetics are second order overall, first order in both 1-I+ and acceptor olefin. Transfer of the bromonium ion from 1-Br+ to these acceptor olefins exhibits different kinetic characteristics. In most cases, the rate of the Br+ transfer is subject to strong retardation in the presence of added parent olefin (Ad=Ad), suggestive of a common species rate depression. In some cases, such as 4-penten-1-ol (2b) and 4-pentenoic acid (4b), the reaction can be completely suppressed at high [Ad=Ad]. In other cases, such as 3-buten-1-ol (2a), 5-hexen-1-ol (2c), cyclohexene, 4-(hydroxymethyl)cyclohexene (3), and 5-endo-carboxynorbornene (5), added Ad=Ad does not suppress the reaction completely. In the cases of the 1,ω-alkenols, the reactions appear to exhibit kinetic terms that are greater than first order in alkenol. In these cases, alcohols such as 1-pentanol also accelerate the reaction, pointing to the involvement of the hydroxyl group of the second alkenol as a catalytic species. A unifying mechanism consistent with the data that involves two reversibly formed intermediates is presented.
Halocyclization of Unsaturated Alcohols and Carboxylic Acids Using Bis(sym-collidine)iodine(I) Perchlorate
Evans, Robert D.,Magee, Joseph W.,Schauble, J. Herman
, p. 862 - 868 (2007/10/02)
Reaction of I(collidine)2(1+) ClO4(1-) with unsaturated alcohols and carboxylic acids in dichloromethane at ambient temperature has afforded three- to seven-membered-ring iodoethers and four- to seven-membered-ring iodolactones, respectively, in moderate