627-27-0Relevant articles and documents
A recoverable Pd nanocatalyst for selective semi-hydrogenation of alkynes: Hydrogenation of benzyl-propargylamines as a challenging model
Uberman, Paula M.,Costa, Natalia J. S.,Philippot, Karine,C. Carmona, Rafaela,Dos Santos, Alcindo A.,Rossi, Liane M.
, p. 4566 - 4574 (2014)
We describe a recyclable heterogeneous palladium nanocatalyst for the selective hydrogenation of alkynes to alkenes. The catalyst was prepared through the decomposition of the organometallic precursor Pd2(dba)3 over a magnetic support, obtaining well-dispersed Pd nanoparticles that formed exclusively on the support surface, with average diameter of 3.5 ± 0.8 nm. The catalytic activity was investigated in the hydrogenation reactions of alkenes and alkynes, and the chemo- and stereoselectivity were evaluated in the hydrogenation of benzyl-propargylamines. The catalyst is highly selective in performing semi-hydrogenation reactions under mild conditions and short reaction times, with good overall yields. Furthermore, it can be easily recovered and recycled, with no leaching of palladium detected, and activities and selectivity retained over multiple reaction cycles. This journal is
Selective production of 1,3-butadiene from 1,3-butanediol over Y2Zr2O7 catalyst
Matsuda, Asami,Matsumura, Yoshitaka,Sato, Satoshi,Yamada, Yasuhiro
, p. 1651 - 1658 (2021/07/21)
The vapor-phase dehydration of 1,3-butanediol (1,3-BDO) to produce 1,3-butadiene (BD) was evaluated over yttrium zirconate, which was prepared through a hydrothermal aging process. 1,3-BDO was initially dehydrated to three unsaturated alcohols, namely 3-buten-2-ol, 3-buten-1-ol, and 2-buten-1-ol, followed by the further dehydration to BD. The catalytic activity of yttrium zirconate was greatly dependent on the calcination temperature. Also, the reaction temperature was one of the important factors to produce BD efficiently. The selectivity to BD was increased with increasing reaction temperature up to 375°C, while coke formation resulted in catalyst deactivation together with by-product formation at higher temperatures. Yttrium zirconate catalyst calcined at 900°C showed a high BD yield of 95% at 375°C and 10 hr on stream.
Selective oxidation of crotyl alcohol by Au: X Pd bimetallic pseudo-single-atom catalysts
Chivers, Brandon A.,Scott, Robert W. J.
, p. 7706 - 7718 (2020/11/27)
AuPd bimetallic single-atom catalysts are being extensively studied as selective catalysts for hydrogenation and oxidation reactions due to their high selectivity. Previous work in our group has shown that alloy and core-shell AuPd nanoparticle catalysts can selectively oxidize crotyl alcohol to crotonaldehyde at room temperature in base-free conditions. In this work, we discuss the synthesis, extensive characterization, and activity for crotyl alcohol oxidation across a series of AuxPd catalysts (x = 4, 3, 2, and 1) made by both co-reduction and sequential reduction strategies, in order to examine whether single-atom systems can lead to improved activity and/or selectivity for this reaction. X-ray absorption spectroscopy data shows that both co-and sequentially-reduced Au4Pd catalysts have very small Pd-Pd coordination numbers, with values of 1.2 ± 0.3 and 1.6 ± 0.3, respectively, which indicates that they are closest to single-atom systems. The co-Au4Pd catalyst, with the lowest Pd-Pd CN, also exhibits the highest selectivity for the selective oxidation of crotyl alcohol to crotonaldehyde. We were further able to enhance the selectivity of the AuPd nanoparticle catalysts by incorporating vinyl acetate as a hydride scavenger. We show in this paper that dispersing Pd in a Au matrix can lead to very selective catalysts while also lowering the amount of Pd needed in the system.