Welcome to LookChem.com Sign In|Join Free

CAS

  • or

126727-03-5

Post Buying Request

126727-03-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

126727-03-5 Usage

Uses

DL-Leucine-d10-N-FMOC is a useful isotopically labeled compound

Check Digit Verification of cas no

The CAS Registry Mumber 126727-03-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,2,6,7,2 and 7 respectively; the second part has 2 digits, 0 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 126727-03:
(8*1)+(7*2)+(6*6)+(5*7)+(4*2)+(3*7)+(2*0)+(1*3)=125
125 % 10 = 5
So 126727-03-5 is a valid CAS Registry Number.

126727-03-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(9H-Fluoren-9-ylmethoxycarbonylamino)-4-methyl-pentanoic acid

1.2 Other means of identification

Product number -
Other names Fmoc-Leu-OH

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:126727-03-5 SDS

126727-03-5Relevant articles and documents

Amino Acids Bearing Aromatic or Heteroaromatic Substituents as a New Class of Ligands for the Lysosomal Sialic Acid Transporter Sialin

Dubois, Lilian,Pietrancosta, Nicolas,Cabaye, Alexandre,Fanget, Isabelle,Debacker, Cécile,Gilormini, Pierre-André,Dansette, Patrick M.,Dairou, Julien,Biot, Christophe,Froissart, Roseline,Goupil-Lamy, Anne,Bertrand, Hugues-Olivier,Acher, Francine C.,Mccort-Tranchepain, Isabelle,Gasnier, Bruno,Anne, Christine

, p. 8231 - 8249 (2020)

Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 μM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.

Novel chiral stationary phases based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin combining cinchona alkaloid moiety

Zhu, Lunan,Zhu, Junchen,Sun, Xiaotong,Wu, Yaling,Wang, Huiying,Cheng, Lingping,Shen, Jiawei,Ke, Yanxiong

, p. 1080 - 1090 (2020/05/25)

Novel chiral selectors based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin connecting quinine (QN) or quinidine (QD) moiety were synthesized and immobilized on silica gel. Their chromatographic performances were investigated by comparing to the 3,5-dimethyl phenylcarbamoylated β-cyclodextrin (β-CD) chiral stationary phase (CSP) and 9-O-(tert-butylcarbamoyl)-QN-based CSP (QN-AX). Fmoc-protected amino acids, chiral drug cloprostenol (which has been successfully employed in veterinary medicine), and neutral chiral analytes were evaluated on CSPs, and the results showed that the novel CSPs characterized as both enantioseparation capabilities of CD-based CSP and QN/QD-based CSPs have broader application range than β-CD-based CSP or QN/QD-based CSPs. It was found that QN/QD moieties play a dominant role in the overall enantioseparation process of Fmoc-amino acids accompanied by the synergistic effect of β-CD moiety, which lead to the different enantioseparation of β-CD-QN-based CSP and β-CD-QD-based CSP. Furthermore, new CSPs retain extraordinary enantioseparation of cyclodextrin-based CSP for some neutral analytes on normal phase and even exhibit better enantioseparation than the corresponding β-CD-based CSP for certain samples.

Structure-guided engineering of: Meso -diaminopimelate dehydrogenase for enantioselective reductive amination of sterically bulky 2-keto acids

Cheng, Xinkuan,Chen, Xi,Feng, Jinhui,Wu, Qiaqing,Zhu, Dunming

, p. 4994 - 5002 (2018/10/17)

meso-Diaminopimelate dehydrogenase (DAPDH) and mutant enzymes are an excellent choice of biocatalysts for the conversion of 2-keto acids to the corresponding d-amino acids. However, their application in the enantioselective reductive amination of bulky 2-keto acids, such as phenylglyoxylic acid, 2-oxo-4-phenylbutyric acid, and indole-3-pyruvic acid, is still challenging. In this study, the structure-guided site-saturation mutagenesis of a Symbiobacterium thermophilum DAPDH (StDAPDH) gave rise to a double-site mutant W121L/H227I, which showed dramatically improved enzyme activities towards various 2-keto acids including these sterically bulky substrates. Several d-amino acids were prepared in optically pure form. The molecular docking of substrates into the active sites of wild-type and mutant W121L/H227I enzymes revealed that the substrate binding cavity of the mutant enzyme was reshaped to accommodate these bulky substrates, thus leading to higher enzyme activity. These results lay a foundation for further shaping the substrate binding pocket and manipulating the interactions between the substrate and binding sites to access highly active d-amino acid dehydrogenases for the preparation of synthetically challenging d-amino acids.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 126727-03-5