Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1271-47-2

Post Buying Request

1271-47-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1271-47-2 Usage

Chemical Description

Ethynylferrocene is a compound containing a ferrocene unit and an ethynyl group.

Chemical Properties

red-brown crystals or crystalline powder

Check Digit Verification of cas no

The CAS Registry Mumber 1271-47-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,2,7 and 1 respectively; the second part has 2 digits, 4 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 1271-47:
(6*1)+(5*2)+(4*7)+(3*1)+(2*4)+(1*7)=62
62 % 10 = 2
So 1271-47-2 is a valid CAS Registry Number.
InChI:InChI=1/C7H.C5H.Fe/c1-2-7-5-3-4-6-7;1-2-4-5-3-1;/h1H;1H;/q2*-5;

1271-47-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name Ethynylferrocene

1.2 Other means of identification

Product number -
Other names ETHYNYLFERROCENE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1271-47-2 SDS

1271-47-2Related news

Photo-Gated Intervalence Charge Transfer of ETHYNYLFERROCENE (cas 1271-47-2) Functionalized Titanium Dioxide Nanoparticles08/12/2019

Ethynylferrocene-functionalized titanium dioxide nanoparticles (TiO2-eFc) were synthesized, for the first time ever, by a modified two-phase hydrothermal method. Transmission electron microscopic measurements showed that the nanoparticles were rather uniform in size, with an average diameter of ...detailed

Phosphonium salts derived from α-ferrocenylvinyl cation in situ generated in sc-CO2 from ETHYNYLFERROCENE (cas 1271-47-2) by Nafion film08/11/2019

A protonation of ethynylferrocene by nafion in sc-CO2 in the presence of triphenylphosphine (PPh3) or 1,2-bis(diphenylphosphino)ethane (DPPE) leads to a formation of novel (1-ferrocenylvinyl)phosphonium or ferrocenyl substituted bisphosphonium salt isolated as tetrafluoroborates 3 and 4, respect...detailed

Sulfonium salts derived from α-ferrocenylvinyl cation in situ generated in sc-CO2 from ETHYNYLFERROCENE (cas 1271-47-2) by nafion film08/10/2019

A superacidic polymer Nafion protonates ferrocenylacetylene (1) in sc−CO2 (35 °C, 9 MPa) to from the α-ferrocenylvinyl cation, FcC+=CH2 (2, Fc = ferrocenyl). Carbocation 2 in situ alkenylates dimethyl sulfide (25 MPa) or 1,4-dithiane (35 MPa) to give 1-ferrocenylvinyl sulfonium salts isolated ...detailed

Reactions of allylzinc bromide with ETHYNYLFERROCENE (cas 1271-47-2) derived fluorinated cyclophosphazenes08/09/2019

The use of organozinc reagents in the synthesis of terminal alkene derived cyclic halogenated phosphazenes has been explored by the reactions of allylzinc bromide and ethynylferrocene derived fluorophosphazenes. The reaction of monoethynylferrocene derived fluorophosphazene, [(FcCC)(F)PN](PNF2)2...detailed

1271-47-2Relevant articles and documents

Benkeser, R. A.,Fitzgerald, W. P.

, p. 4179 - 4180 (1961)

Ferrocenylethenylsilatranes and a cymantrenylsilatrane

Pedersen, Bjorn,Wagner, Gabriele,Herrmann, Rudolf,Scherer, Wolfgang,Meerholz, Klaus,Schmaelzlin, Elmar,Braeuchle, Christoph

, p. 129 - 137 (1999)

The syntheses, properties and crystal structures of two isomeric ferrocenylethenylsilatranes and 1-(3-methylcymantrenyl)silatrane are reported. The organometallic moieties and the silatrane show little structural influence on each other. The Si-N distance

Synthesis, Structure, Electrochemical, and Spectroscopic Properties of Hetero-Bimetallic Ru(II)/Fe(II)-Alkynyl Organometallic Complexes

Sil, Amit,Ghosh, Utsav,Mishra, Vipin Kumar,Mishra, Sabyashachi,Patra, Sanjib K.

, p. 1155 - 1166 (2019)

A series of heterobimetallic wire-like organometallic complexes [(tpy-C6H4-R)(PPh3)2Ru-C-C-Fc]+ (tpy-C6H4-R = 4′-(aryl)-2,2′:6′,2′′-terpyridyl, Fc = [(η5-Cp)2Fe], R = -H, -Me, -F, -NMe2 in complexes 5-8, respectively) featuring ferrocenyl and 4′-(aryl)-2,2′:6′,2′′-terpyridyl ruthenium(II) complexes as redox active metal termini, have been synthesized. Various spectroscopic tools, such as multinuclear NMR, IR spectra, HRMS, CHN analyses, and single crystal X-ray crystallography have been utilized to characterize the heterobimetallic complexes. The electrochemical and UV-vis-NIR spectroscopic studies have been investigated to evaluate the electronic delocalization across the molecular backbones of the Ru(II)-Fe(II) heterobinuclear organometallic dyads. Electrochemical studies reveal two well-separated reversible redox waves as a result of successive oxidation of the ferrocenyl and Ru(II) redox centers. The spin density distribution analyses reveal that the initial oxidation process is associated with the Fe(II)/Fe(III) couple followed by one electron oxidation of the ruthenium(II) center. The high Kc value (0.11-1.73 × 1012) and intense NIR absorption, with molar absorption coefficient (in the order of 103 M-1 cm-1) for the RuIIFeIII mixed-valence species, signify strong electronic communication between the two metal termini. The electronic coupling constant (Hab) has been estimated to be 492 and 444 cm-1 for the structurally characterized complexes 6 and 7, respectively. The redox and NIR absorption features indicate that the mixed-valence system of the heterobinuclear dyads belongs to a Robin and Day "class II" system.

A practical synthesis of ethynylferrocene from ferrocene carboxaldehyde: Structure of 1,4-diferrocenyl-1,3-butadiyne

Rodriguez, Jose-Gonzalo,Onate, Antonio,Martin-Villamil, Rosa M.,Fonseca, Isabel

, p. 71 - 76 (1996)

Ethynylferrocene was satisfactoryly obtained by a Wittig reaction between ferrocene carboxaldehyde and chloromethylentriph-enylphosphonium ylid to give an E/Z mixture of 2-chloro-1-ferrocenylethene. Both isomers were isolated pure by chemical methods. Reaction of the isomers mixture with n-butyllithium allowed ethynylferrocene to be obtained in good yield. The method was applied in one pot giving the ethynylferrocene and (E/Z)-1,4-diferrocenyl-but-1-en-3-yne as a secondary product. Oxidative coupling to 1,4-diferrocenyl-1,3-butadiyne has been carried out in quantitative yields. A single-crystal analysis of the diyne was carried out, but the compound is unreactive in solid state.

Rosenblum, M.,Brawn, M.,Papenmeier, J.,Applebaum, N.

, p. 173 - 180 (1966)

Schloegl, K.,Steyrer, W.

, (1965)

Synthesis of a diferrocenylvinylidene complex by migration of a ferrocenyl substituent

Korb, Marcus,Moggach, Stephen A.,Low, Paul J.

supporting information, p. 4251 - 4254 (2021/05/05)

An unusual 1,2-ferrocenyl migration has been observed following reactions of [Ru(dppe)Cp][BArF4] with diferrocenylacetylene, extending the scope of group rearrangments beyond methyl (Wagner-Meerwein) and phenyl entities. Ferrocene-containing bis(alkynes) RCCArCCR (R = Fc, Ar = 1,4-phenylene; R = Ph, Ar = 1,1′-ferrocenylene) gave bimetallic bis(vinylidene) complexes following two consecutive rearrangements.

Novel ferrocene-labeled propargyl amines via CuI multicomponent amination/alkynylation

Srivastava, Suman

supporting information, p. 6469 - 6471 (2019/05/04)

An efficient synthesis of ferrocene-tagged propargyl amine derivatives via one-pot three-component domino amination/alkynylation in water is reported. The synthesis involves a single Cu(i) catalyst without addition of a ligand, has broad substrate applicability and gives excellent yields.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1271-47-2