Welcome to LookChem.com Sign In|Join Free
  • or

133-32-4

Post Buying Request

133-32-4 Suppliers

Recommended suppliersmore

Product FOB Price Min.Order Supply Ability Supplier
Indole-3-butyric acid
Cas No: 133-32-4
No Data 1 Kilogram 1 Metric Ton/Week Hangzhou J&H Chemical Co., Ltd. Contact Supplier
Manufacturer supply 3-Indolebutyric acid CAS 133-32-4 with best price
Cas No: 133-32-4
USD $ 10.0-15.0 / Kilogram 25 Kilogram 100 Metric Ton/Month Wuhan Fortuna Chemical Co.,Ltd Contact Supplier
3-Indolebutyric acid
Cas No: 133-32-4
No Data 1 Gram Metric Ton/Day Hangzhou Share Chemical Co., Ltd Contact Supplier
3-Indolebutyric acid
Cas No: 133-32-4
No Data 100 Kilogram 0.5 Metric Ton/Day Changzhou Ruiping Chemical Co., Ltd Contact Supplier
High purity 3-Indolebutyric acid with high quality and best price cas:133-32-4
Cas No: 133-32-4
USD $ 60.0-75.0 / Kilogram 1 Kilogram 99999 Kilogram/Year Hangzhou Dingyan Chem Co., Ltd Contact Supplier
3-Indolebutyric acid, 133-32-4
Cas No: 133-32-4
No Data 1 Kilogram 50 Metric Ton/Month ORCHID CHEMICAL SUPPLIES LTD Contact Supplier
3-Indolebutyric acid suppliers in China
Cas No: 133-32-4
USD $ 3.0-3.0 / Kilogram 1 Kilogram 1-100 Metric Ton/Month Hangzhou Dayangchem Co., Ltd. Contact Supplier
3-Indolebutyric acid
Cas No: 133-32-4
No Data 1 Gram 100 Metric Ton/Month Yurui(Shanghai)Chemical Co.,Ltd Contact Supplier
3-Indolebutyric acid 133-32-4
Cas No: 133-32-4
No Data 1 Kilogram 1000 Metric Ton/Year Hefei TNJ chemical industry co.,ltd Contact Supplier
3-Indolebutyric acid
Cas No: 133-32-4
No Data 1 Kilogram 1 Metric Ton/Month Henan Allgreen Chemical Co.,Ltd Contact Supplier

133-32-4 Usage

Uses

To stimulate root formation of plant clippings.

Analytical method

1. Product analysis: in the absolute ethanol, measure it at wavelength of 281nm through UV spectrophotometry (ACF Chemiefarma method).
2. Residue Analysis: use chloroform for extraction from the acid medium, and put its methanol solution together with petroleum ether (40~60 ℃) for shaking absorption, and further use high performance liquid chromatography for applying ultraviolet detection (ACF Chemiefarma France). Alternatively, you can also refer to the indole acetic acid residue analysis. First derive methyl or the trimethyl ester of silane, and then use gas chromatography for analysis.

Uses

Indole butyric acid (IBA) is a broad spectrum indole-class plant growth regulators and is a good rooting agent. It can promote the cuttings and rooting of herbaceous and woody ornamental plant. It can also be applied to the fruit setting of fruit as well as improving the fruit setting rate.

Physical and Chemical Properties

3-Indolebutyric acid: (molecule formula: C11H12O2N) has a molecular weight of 190.22. The pure product is white crystalline solid with the melting point being 124~125 ℃. Its industrial product is white to pale yellow crystals with a melting point being 121~124 ℃. It has special smell and is toxic! It is irritant with a vapor pressure being <10μPa at 60 ℃. It is difficult to be dissolved in water with the solubility in water at 20 ℃ being 0.25g/L. It is easily soluble in benzene and soluble in other organic solvents. Its solubility (g/100ml) is: benzene> 100; acetone, ethanol, ethyl ether: 3 to 10; chloroform: 1 to 10. 3-indolebutyric acid has a low toxicity to humans and animals and is stable to the acid while forming salt in the solution of the hydroxide and carbonate compounds of the alkali metal. It can be produced from indole via Grignard reaction or by adding nitrile for hydrolysis. In Agriculture, 3-indolebutyric acid can be used as plant growth-promoting agent that can promote root growth and fruit ripening with an efficacy being stronger than indole acetic acid. Indole butyric acid is an excellent growth regulator for promoting the cutting and rooting of the cherry rootstock. You can apply rapid high-concentration dip method or soaking for treatment of cutting slips. Rapid high-concentrations dip method is through dipping the base of the cutting slips in IBA solution of a concentration of 5 × 10-4~1 × 10-2 for 5 seconds and immediately inserting the cutting slip in the bed. This method has the advantage of short processing time, even medication and excellent efficacy. After the treatment, adding simazine to the insertion beds (20.375 grams per meter) can lead to a higher rate of rooting.

Plant Growth Regulator

Plant growth regulators are artificially synthetic, physiologically active organic compound that is similar as plant hormones in regulating physiological processes of plants, controlling of plant growth and reproduction of organic compounds. Indole butyric acid (IBA) and naphthalene acetic acid (NAA) are two commonly used plant growth regulator in rooting cuttings with indole butyric acid working best because it has less operation in plants and is easy to be maintained in the vicinity of the site. Furthermore, using root pro-growth regulators in combination with other beneficial growth regulators can play an efficacy-enhancing role or synergistic role which enable a more satisfactory results for plants which are difficult get rooting. Indole butyric acid has a strong rooting-promotion effect but has the adventitious roots be thin and long while the rooting-promotion effect of naphthalene acetic acid (NAA) is less but coarse root. Therefore, we can usually get better results through the mixture of the two.
In 1928, Went (F. W. Went) had first successfully isolated this chemical messenger which causes the bending of the coleoptiles, named auxin. In 1934, Kogl (F.Kogl), etc has identified it as indole acetic acid. Accordingly, the indole acetic acid is often used as a synonym for auxin in custom. Shortly after recognizing the role of indole acetic acid on regulating the growth effect, scientists further found that indole propionic acid (IPA) and indole butyric acid (IBA) also has physiological effects similar to auxin. Later it was also found that naphthalene acetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,6-trichloro-benzoic acid and 4-amino-3,5,6-trichloro-pyridine carboxylic acids and their derivatives (including salts, esters, amides, such as sodium naphthalene acetic acid, 2,4-D butyl ester, naphthyl ethyl amide) all have the activity of auxin.
3-Indolebutyric acid is not easy to be oxidized in plants and has a poor conductivity. It has similar physiological effect as indole acetic acid. It can take effect in cell division and cell growth of plants but with a less significant effect compared with indole acetic acid is mainly used to promote rooting cuttings and effectively promote cell division cambium. It has a relative long maintaining time for its efficacy and can promote more but slender adventitious roots with better efficacy when being administered together with naphthalene acetic acid.
Indole-3-butyric acid can be applied to the cuttings and root cutting of chrysanthemum and other ornamental plants for facilitating the rooting at a concentration of 0.5~1.0mg/L. However, we should not be applied to the foliage of the plants. Degradation and Metabolism: it can subject to rapid degradation in the soil.
The above information is edited by the Chemicalbook of Dai Xiongfeng.

Purification Methods

Recrystallise the acid from H2O. It is soluble in EtOH, Et2O and Me2CO but insoluble in CHCl3. [Bowman & Islip Chem Ind London 154 1971, Jackson & Manske J Am Chem Soc 52 5029 1930, Albaum & Kaiser Am J Bot 24 420 1937.] It has also been recrystallised from EtOH/water [James & Ware J Phys Chem 89 5450 1985]. Its UV has 278 and 320nm in isoPrOH [Elvidge Quart J Pharm Pharmacol 13 219 1940].max The methyl ester has m 73-74o (from *C6H6/pet ether) and b 230o/6mm [Bullock & Hand J Am Chem Soc 78 5854 1951]. [Beilstein 22 III/IV 1128, 22/3 V 140.]

Chemical Properties

The pure product is white crystals. m.p.124~125 ℃, vapor pressure <10 × 10-6Pa) (60 ℃). It is easily soluble in organic solvents but insoluble in water. It is stable to acid. The industrial product is white to pale yellow crystals with a melting point of 121~124 ℃.

Preparation

Laboratory put the mixture of indole, potassium hydroxide, and poly oxalic acid, dried tetrahydronaphthalene and γ-butyrolactone for heating under reflux to obtain the indole butyric acid. The reaction equation is as follows:

Indole, potassium hydroxide, poly oxalic acid and dried tetrahydronaphthalene were added to the reaction vessel. The mixture was stirred for half an hour at room temperature; add γ-butyrolactone for heating reflux for 4 hours. The water remaining in the reaction system is removed by the water segregator. After cooling, the solid was totally dissolved by water with the separated organic layer being acidified with hydrochloric acid for precipitating a large number of off-white solid. Use suction filtration, wash with water, and dry to give the crude indole butyric acid with the yield of the crude product being 92.6%. After recrystallisation but aqueous ethanol, you can obtain white flaky crystals that is indole-3-butyric acid with the mp being 121.5~123 ℃.

Reference: Daquan Wang (editor), “fine chemical production route” 2nd version, Beijing: Chemical Industry Press .1999 p. 260-261.

Toxicity

It has low toxicity to humans and animals. Acute-oral rat: LD50: 5000mg/kg, mice 1760mg/kg. Carp LC50: 180mg/L (48h). It has low toxicity to bees.

Uses

Used to stimulate root formation of plant clippings. Suitable for plant cell culture tested.

Chemical Properties

white to light yellow crystalline powder
InChI:InChI=1/C12H13NO2/c14-12(15)7-3-4-9-8-13-11-6-2-1-5-10(9)11/h1-2,5-6,8,13H,3-4,7H2,(H,14,15)/p-1

133-32-4 Well-known Company Product Price

Brand (Code)Product description CAS number Packaging Price Detail
Sigma-Aldrich (45532)  Indole-3-butyricacid  PESTANAL®, analytical standard 133-32-4 45532-250MG 450.45CNY Detail
Alfa Aesar (A15260)  Indole-3-butyric acid, 98%    133-32-4 100g 3472.0CNY Detail
Alfa Aesar (A15260)  Indole-3-butyric acid, 98%    133-32-4 25g 992.0CNY Detail
Alfa Aesar (A15260)  Indole-3-butyric acid, 98%    133-32-4 5g 331.0CNY Detail
TCI America (I0026)  3-Indolebutyric Acid  >98.0%(HPLC)(T) 133-32-4 25g 215.00CNY Detail
TCI America (I0026)  3-Indolebutyric Acid  >98.0%(HPLC)(T) 133-32-4 5g 96.00CNY Detail

133-32-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name indole-3-butyric acid

1.2 Other means of identification

Product number -
Other names beta-indolebutyricacid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:133-32-4 SDS

133-32-4Related news

Root hair development of Poncirus trifoliata grown in different growth cultures and treated with 3-Indolebutyric acid (cas 133-32-4) and ethephon10/01/2019

Citrus plants are generally believed to possess few or even no root hair whose function is to uptake nutrient and water from soils. This study compared the development of root hair of a citrus rootstock, Poncirus trifoliata, in four types of cultures or treated with 3-indolebutyric acid and ethe...detailed

Please post your buying leads,so that our qualified suppliers will soon contact you!

*Required Fields