133-32-4 Usage
Uses
Used in Agriculture:
3-Indolebutyric acid is used as a plant growth regulator for promoting the cuttings and rooting of herbaceous and woody ornamental plants. It enhances the fruit setting of fruits and improves the fruit setting rate, making it a valuable tool in horticulture and agriculture.
Used in Plant Cell Culture:
IBA is used as a rooting agent to stimulate root formation of plant clippings, making it suitable for plant cell culture testing and applications.
Used in Plant Hormone Research:
As an auxin-family plant hormone, IBA is used in research to study the role of auxins in plant growth and development, as well as their potential applications in various agricultural and horticultural practices.
Chemical Properties:
The pure product of 3-Indolebutyric acid is white crystals with a melting point of 124-125°C and a vapor pressure of less than 10 × 10^-6 Pa at 60°C. It is easily soluble in organic solvents but insoluble in water. IBA is stable to acid, and the industrial product is white to pale yellow crystals with a melting point of 121-124°C. The solubility of IBA in water is 250 mg L^-1.
Plant Growth Regulator
Indole-3-butyric acid (IBA) is a plant hormone belonging to the auxin family and assists in initiating root formation; the in vitro process is called micropropagation. Aside from accelerating root formation, it is used on various crops to stimulate flower development and the growth of fruits. This ultimately increases crop yields.Because it is similar in structure to naturally occurring substances and is used in tiny amounts, this plant growth regulator poses no known risks to humans or the environment.Indole-3-butyric acid is not easy to be oxidized in plants and has a poor conductivity. It has similar physiological effect as indole acetic acid. It can take effect in cell division and cell growth of plants but with a less significant effect compared with indole acetic acid is mainly used to promote rooting cuttings and effectively promote cell division cambium. It has a relative long maintaining time for its efficacy and can promote more but slender adventitious roots with better efficacy when being administered together with naphthalene acetic acid.Indole-3-butyric acid can be applied to the cuttings and root cutting of chrysanthemum and other ornamental plants for facilitating the rooting at a concentration of 0.5~1.0mg/L. However, we should not be applied to the foliage of the plants. Degradation and Metabolism: it can subject to rapid degradation in the soil.
Physical and Chemical Properties
3-Indolebutyric acid: (molecule formula: C11H12O2N) has a molecular weight of 190.22. The pure product is white crystalline solid with the melting point being 124~125 ℃. Its industrial product is white to pale yellow crystals with a melting point being 121~124 ℃. It has special smell and is toxic! It is irritant with a vapor pressure being <10μPa at 60 ℃. It is difficult to be dissolved in water with the solubility in water at 20 ℃ being 0.25g/L. It is easily soluble in benzene and soluble in other organic solvents. Its solubility (g/100ml) is: benzene> 100; acetone, ethanol, ethyl ether: 3 to 10; chloroform: 1 to 10. 3-indolebutyric acid has a low toxicity to humans and animals and is stable to the acid while forming salt in the solution of the hydroxide and carbonate compounds of the alkali metal. It can be produced from indole via Grignard reaction or by adding nitrile for hydrolysis. In Agriculture, 3-indolebutyric acid can be used as plant growth-promoting agent that can promote root growth and fruit ripening with an efficacy being stronger than indole acetic acid. Indole butyric acid is an excellent growth regulator for promoting the cutting and rooting of the cherry rootstock. You can apply rapid high-concentration dip method or soaking for treatment of cutting slips. Rapid high-concentrations dip method is through dipping the base of the cutting slips in IBA solution of a concentration of 5 × 10-4~1 × 10-2 for 5 seconds and immediately inserting the cutting slip in the bed. This method has the advantage of short processing time, even medication and excellent efficacy. After the treatment, adding simazine to the insertion beds (20.375 grams per meter) can lead to a higher rate of rooting.
Preparation
Laboratory put the mixture of indole, potassium hydroxide, and poly oxalic acid, dried tetrahydronaphthalene and γ-butyrolactone for heating under reflux to obtain the indole butyric acid. The reaction equation is as follows:
Indole, potassium hydroxide, poly oxalic acid and dried tetrahydronaphthalene were added to the reaction vessel. The mixture was stirred for half an hour at room temperature; add γ-butyrolactone for heating reflux for 4 hours. The water remaining in the reaction system is removed by the water segregator. After cooling, the solid was totally dissolved by water with the separated organic layer being acidified with hydrochloric acid for precipitating a large number of off-white solid. Use suction filtration, wash with water, and dry to give the crude indole butyric acid with the yield of the crude product being 92.6%. After recrystallisation but aqueous ethanol, you can obtain white flaky crystals that is indole-3-butyric acid with the mp being 121.5~123 ℃.
Reference: Daquan Wang (editor), “fine chemical production route” 2nd version, Beijing: Chemical Industry Press .1999 p. 260-261.
Analytical method
1. Product analysis: in the absolute ethanol, measure it at wavelength of 281nm through UV spectrophotometry (ACF Chemiefarma method).
2. Residue Analysis: use chloroform for extraction from the acid medium, and put its methanol solution together with petroleum ether (40~60 ℃) for shaking absorption, and further use high performance liquid chromatography for applying ultraviolet detection (ACF Chemiefarma France). Alternatively, you can also refer to the indole acetic acid residue analysis. First derive methyl or the trimethyl ester of silane, and then use gas chromatography for analysis.
Toxicity
It has low toxicity to humans and animals. Acute-oral rat: LD50: 5000mg/kg, mice 1760mg/kg. Carp LC50: 180mg/L (48h). It has low toxicity to bees.
Biochem/physiol Actions
Indole-3-butyric acid (IBA) is a naturally occurring phytohormone auxin (plant growth regulator). It promotes root formation in cuttings but does not affect ethylene levels. IBA might be a precursor for indole-3-acetic acid (IAA) through β oxidation pathway. IBA is present in plant species like Zea mays, Pisum sativum and Arabidopsis. IBA is more potent than IAA for inducing root formation.
Purification Methods
Recrystallise the acid from H2O. It is soluble in EtOH, Et2O and Me2CO but insoluble in CHCl3. [Bowman & Islip Chem Ind London 154 1971, Jackson & Manske J Am Chem Soc 52 5029 1930, Albaum & Kaiser Am J Bot 24 420 1937.] It has also been recrystallised from EtOH/water [James & Ware J Phys Chem 89 5450 1985]. Its UV has 278 and 320nm in isoPrOH [Elvidge Quart J Pharm Pharmacol 13 219 1940].max The methyl ester has m 73-74o (from *C6H6/pet ether) and b 230o/6mm [Bullock & Hand J Am Chem Soc 78 5854 1951]. [Beilstein 22 III/IV 1128, 22/3 V 140.]
Check Digit Verification of cas no
The CAS Registry Mumber 133-32-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,3 and 3 respectively; the second part has 2 digits, 3 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 133-32:
(5*1)+(4*3)+(3*3)+(2*3)+(1*2)=34
34 % 10 = 4
So 133-32-4 is a valid CAS Registry Number.
InChI:InChI=1/C12H13NO2/c14-12(15)7-3-4-9-8-13-11-6-2-1-5-10(9)11/h1-2,5-6,8,13H,3-4,7H2,(H,14,15)/p-1
133-32-4Relevant articles and documents
Synthetic method of terminal carboxylic acid
-
Paragraph 0179-0182, (2019/11/21)
The invention discloses a synthetic method of a terminal carboxylic acid. The synthetic method is characterized by comprising the steps of adding an olefin represented by a formula (3) shown in the description, formic acid, acetic anhydride, Pd(OAc)2 and a monophosphorus ligand TFPP into an organic solvent in a proportion, carrying out hydrogen carbonylation reaction on the olefin represented by the formula (3) shown in the description, formic acid and acetic anhydride at 80-90 DEG C for 48h-72h under the catalysis of the metal palladium salt Pd(OAc)2 and the monophosphorus ligand TFPP so as to obtain the terminal carboxylic acid represented by a formula shown in the description, and separating a target product, namely the terminal carboxylic acid after the reaction is finished, wherein olefin represented by the formula (3) is selected from cycloolefins, or linear olefins of which the R1 is electron donating groups. By virtue of the method disclosed by the invention, corresponding terminal carboxylic acid and a derivative thereof can be prepared through the reaction under mild conditions of low temperature and no high pressure; and the steps of the synthetic method are simple and convenient, the operation is convenient, the yield is high, the energy source can be greatly saved, and the synthetic efficiency can be greatly improved.
Pd-Catalyzed Highly Chemo- And Regioselective Hydrocarboxylation of Terminal Alkyl Olefins with Formic Acid
Ren, Wenlong,Chu, Jianxiao,Sun, Fei,Shi, Yian
supporting information, p. 5967 - 5970 (2019/08/26)
An efficient Pd-catalyzed hydrocarboxylation of alkenes with HCOOH is described. A wide variety of linear carboxylic acids bearing various functional groups can be obtained with excellent chemo- and regioselectivities under mild reaction conditions. The reaction process is operationally simple and requires no handling of toxic CO.
Synthesis of 1-substituted 4-[4-(1H-indol-3-yl)butyl]piperazines
Labanauskas, Linas,Mazeikaite, Rita,Urbelis, Gintaras,Gedrimaite, Olga,Sudzius, Jurgis,Cikotiene, Inga
, p. 363 - 376 (2014/01/23)
A convenient synthetic route for preparation of various 4-[4-(1H-indol-3-yl)butyl]piperazines bearing heterocyclic and aliphatic substituents in position 1 has been developed. During this work some synthetic possibilities of common precursor, 4-[4-(1H-indol-3-yl)butyl]piperazine, were studied and evaluated. ARKAT-USA, Inc.
Deciphering DNA-based asymmetric catalysis through intramolecular Friedel-Crafts alkylations
Park, Soyoung,Ikehata, Keiichi,Watabe, Ryo,Hidaka, Yuta,Rajendran, Arivazhagan,Sugiyama, Hiroshi
supporting information, p. 10398 - 10400,3 (2020/09/09)
We describe asymmetric intramolecular Friedel-Crafts alkylations with a DNA-based hybrid catalyst and propose a plausible binding model. This study shows promise for studying relationships between the helical chirality of DNA and enantioselectivity of the chemical reaction.
Preparation of 2S,3S-N-isobutyl-N-(2-hydroxy-3-amino-4-phenylbutyl) -p-nitrobenzenesulfonylamide hydrochloride and other derivatives of 2-hydroxy-1,3-diamines
-
, (2008/06/13)
The present invention provides a new process for the preparation of 2S, 3S-N-isobutyl-N-(2-hydroxy-3-amino-4-phenylbutyl)-p-nitrobenzenesulfonylamide hydrochloride, wherein this compound is prepared directly from the chloromethylalcohol. Importantly, the
Patch preparations for treating plants
-
, (2008/06/13)
The following invention introduces a patch preparation for treating plants, whereas the patch preparations comprise a chemical layer composed of at least one agrochemically active compound, at least one adhesive and optionally, one or more additives. The components are dispersed in a matrix state on a substrate which are then introduced on the roots of the plant to be treated.
1,2,3-Thiadiazole-3-in-5-ylidene-urea derivatives, process for making the same and compositions containing the same having growth regulating activity for plants
-
, (2008/06/13)
1,2,3-Thiadiazole-3-in-5-ylidene-urea derivative of the formula STR1 in which R1 is hydrogen or alkyl which may be substituted in one or several places by oxygen or sulfur and wherein R2 and R3 have the meaning as given in the attached specification and wherein X is oxygen or sulfur. The compounds have properties suited for controlling the natural growth and natural development of plants and in addition have a superior defoliating property without accompanying unpleasant odors.
1,2,3-Thiadiazole-2-id derivatives, process for making the same and composition containing the same having a growth regulating activity for plants
-
, (2008/06/13)
1,2,3-Thiadiazole-2-id-derivative of the formula STR1 in which R1 is hydrogen or alkyl which may be substituted in one or several places by oxygen or sulfur and wherein R1 has the meaning as given in the attached specification and wherein X is oxygen or sulfur and B is a univalent metal atom. The compounds have properties suited for controlling the natural growth and natural development of plants and in addition have a superior defoliating property.