Welcome to LookChem.com Sign In|Join Free

CAS

  • or

13380-67-1

Post Buying Request

13380-67-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

13380-67-1 Usage

Chemical Properties

Pale yellow crystalline powder

Check Digit Verification of cas no

The CAS Registry Mumber 13380-67-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,3,3,8 and 0 respectively; the second part has 2 digits, 6 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 13380-67:
(7*1)+(6*3)+(5*3)+(4*8)+(3*0)+(2*6)+(1*7)=91
91 % 10 = 1
So 13380-67-1 is a valid CAS Registry Number.
InChI:InChI=1/C10H6BrNO2/c11-7-1-3-8(4-2-7)12-9(13)5-6-10(12)14/h1-6H

13380-67-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A13119)  N-(4-Bromophenyl)maleimide, 98%   

  • 13380-67-1

  • 1g

  • 285.0CNY

  • Detail
  • Alfa Aesar

  • (A13119)  N-(4-Bromophenyl)maleimide, 98%   

  • 13380-67-1

  • 5g

  • 799.0CNY

  • Detail
  • Alfa Aesar

  • (A13119)  N-(4-Bromophenyl)maleimide, 98%   

  • 13380-67-1

  • 25g

  • 2029.0CNY

  • Detail
  • Alfa Aesar

  • (A13119)  N-(4-Bromophenyl)maleimide, 98%   

  • 13380-67-1

  • 100g

  • 6130.0CNY

  • Detail
  • Aldrich

  • (775207)  N-(4-Bromophenyl)maleimide  97%

  • 13380-67-1

  • 775207-1G

  • 269.10CNY

  • Detail
  • Aldrich

  • (775207)  N-(4-Bromophenyl)maleimide  97%

  • 13380-67-1

  • 775207-5G

  • 723.06CNY

  • Detail

13380-67-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name N-(4-BROMOPHENYL)MALEIMIDE

1.2 Other means of identification

Product number -
Other names 1-(4-Bromophenyl)-1H-pyrrole-2,5-dione N-(p-Bromophenyl)maleimide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:13380-67-1 SDS

13380-67-1Relevant articles and documents

Improvement of thermal properties of poly(vinyl chloride) using chemical blending assisted ultrasonic technique

Al-Ghamdi, Azza

, p. 2285 - 2288 (2017)

The thermal stabilization of poly(vinyl chloride) through blending techniques has been studied. Poly(vinyl chloride) was blended with modified polymer (cellulose acetate-diallyl amine) in different compositions to improve the thermal stability of poly(vinyl chloride). The thermal stability and morphology of the blend films were characterized by scanning electron microscope (SEM) and thermogravimetry. The results revealed that the presence of modified cellulose acetate improved the thermal stability of poly(vinyl chloride). This was attributed to the thermal stable diallylamine moieties among the cellulose acetate chains. The addition of traces of maleimide derivatives to poly(vinyl chloride) prior to the blend process led to an extra thermal stability of the blend film as shown from the values of the initial decomposition temperature (To) measured by thermogravimetry.

Design, synthesis and biochemical evaluation of novel ethanoanthracenes and related compounds to target burkitt’s lymphoma

Byrne, Andrew J.,Bright, Sandra A.,McKeown, James P.,O’brien, John E.,Twamley, Brendan,Fayne, Darren,Williams, D. Clive,Meegan, Mary J.

, (2020/01/31)

Lymphomas (cancers of the lymphatic system) account for 12% of malignant diseases worldwide. Burkitt’s lymphoma (BL) is a rare form of non-Hodgkin’s lymphoma in which the cancer starts in the immune B-cells. We report the synthesis and preliminary studies on the antiproliferative activity of a library of 9,10-dihydro-9,10-ethanoanthracene based compounds structurally related to the antidepressant drug maprotiline against BL cell lines MUTU-1 and DG- 75. Structural modifications were achieved by Diels-Alder reaction of the core 9-(2- nitrovinyl)anthracene with number of dienophiles including maleic anhydride, maleimides, acrylonitrile and benzyne. The antiproliferative activity of these compounds was evaluated in BL cell lines EBV? MUTU-1 and EBV+ DG-75 (chemoresistant). The most potent compounds 13j, 15, 16a, 16b, 16c, 16d and 19a displayed IC50 values in the range 0.17–0.38 μM against the BL cell line EBV? MUTU-1 and IC50 values in the range 0.45–0.78 μM against the chemoresistant BL cell line EBV+ DG- 75. Compounds 15, 16b and 16c demonstrated potent ROS dependent apoptotic effects on the BL cell lines which were superior to the control drug taxol and showed minimal cytotoxicity to peripheral blood mononuclear cells (PBMCs). The results suggest that this class of compounds merits further investigation as antiproliferative agents for BL.

Nickel(II) Tetraphenylporphyrin as an Efficient Photocatalyst Featuring Visible Light Promoted Dual Redox Activities

Mandal, Tanumoy,Das, Sanju,De Sarkar, Suman

supporting information, p. 3200 - 3209 (2019/05/16)

Nickel(II) tetraphenylporphyrin (NiTPP) is presented as a robust, cost-effective and efficient visible light induced photoredox catalyst. The ground state electrochemical data (CV) and electronic absorption (UV-Vis) spectra reveal the excited state redox potentials for [NiTPP]*/[NiTPP].? and NiTPP].+/[NiTPP]* couples as +1.17 V and ?1.57 V vs SCE respectively. The potential values represent NiTPP as a more potent photocatalyst compare to the well-explored [Ru(bpy)3]2+. The non-precious photocatalyst exhibits excited state redox reactions in dual fashions, i. e., it is capable of undergoing both oxidative as well as reductive quenching pathways. Such versatility of a photocatalyst based on first-row transition metals is very scarce. This unique phenomenon allows one to perform diverse types of redox reactions by employing a single catalyst. Two different sets of chemical reactions have been performed to represent the synthetic utility. The catalyst showed superior efficiency in both carbon-carbon and carbon-heteroatom bond-forming reactions. Thus, we believe that NiTPP is a valuable addition to the photocatalyst library and this study will lead to more practical synthetic applications of earth-abundant-metal-based photoredox catalysts. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 13380-67-1