Welcome to LookChem.com Sign In|Join Free

CAS

  • or

137144-15-1

Post Buying Request

137144-15-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

137144-15-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 137144-15-1 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,3,7,1,4 and 4 respectively; the second part has 2 digits, 1 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 137144-15:
(8*1)+(7*3)+(6*7)+(5*1)+(4*4)+(3*4)+(2*1)+(1*5)=111
111 % 10 = 1
So 137144-15-1 is a valid CAS Registry Number.

137144-15-1Relevant articles and documents

Catalytic α-Deracemization of Ketones Enabled by Photoredox Deprotonation and Enantioselective Protonation

Chen, Shuming,Gao, Anthony Z.,Ivlev, Sergei I.,Meggers, Eric,Nie, Xin,Ye, Chen-Xi,Zhang, Chenhao

supporting information, p. 13393 - 13400 (2021/09/03)

This study reports the catalytic deracemization of ketones bearing stereocenters in the α-position in a single reaction via deprotonation, followed by enantioselective protonation. The principle of microscopic reversibility, which has previously rendered this strategy elusive, is overcome by a photoredox deprotonation through single electron transfer and subsequent hydrogen atom transfer (HAT). Specifically, the irradiation of racemic pyridylketones in the presence of a single photocatalyst and a tertiary amine provides nonracemic carbonyl compounds with up to 97% enantiomeric excess. The photocatalyst harvests the visible light, induces the redox process, and is responsible for the asymmetric induction, while the amine serves as a single electron donor, HAT reagent, and proton source. This conceptually simple light-driven strategy of coupling a photoredox deprotonation with a stereocontrolled protonation, in conjunction with an enrichment process, serves as a blueprint for other deracemizations of ubiquitous carbonyl compounds.

Photocarboxylation of Benzylic C-H Bonds

Meng, Qing-Yuan,Schirmer, Tobias E.,Berger, Anna Lucia,Donabauer, Karsten,K?nig, Burkhard

supporting information, p. 11393 - 11397 (2019/08/20)

The carboxylation of sp3-hybridized C-H bonds with CO2 is a challenging transformation. Herein, we report a visible-light-mediated carboxylation of benzylic C-H bonds with CO2 into 2-arylpropionic acids under metal-free conditions. Photo-oxidized triisopropylsilanethiol was used as the hydrogen atom transfer catalyst to afford a benzylic radical that accepts an electron from the reduced form of 2,3,4,6-tetra(9H-carbazol-9-yl)-5-(1-phenylethyl)benzonitrile generated in situ. The resulting benzylic carbanion reacts with CO2 to generate the corresponding carboxylic acid after protonation. The reaction proceeded without the addition of any sacrificial electron donor, electron acceptor or stoichiometric additives. Moderate to good yields of the desired products were obtained in a broad substrate scope. Several drugs were successfully synthesized using the novel strategy.

Regioselectivity inversion tuned by iron(iii) salts in palladium-catalyzed carbonylations

Huang, Zijun,Cheng, Yazhe,Chen, Xipeng,Wang, Hui-Fang,Du, Chen-Xia,Li, Yuehui

supporting information, p. 3967 - 3970 (2018/04/23)

Impactful regioselectivity control is crucial for cost-effective chemical synthesis. By using cheap and abundant iron(iii) salts, the hydroxycarbonylations of both aromatic and aliphatic alkenes were significantly enhanced in both reactivity and selectivity (iso/n or n/iso up to >99:1). Moreover, Pd-catalyzed carbonylation selectivity can be switched from branched to linear by using different Fe(iii) salts. In addition, similar results were obtained for the carbonylation of secondary alcohols.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 137144-15-1