14323-32-1Relevant articles and documents
Voltammetric monitoring of gold nanoparticle formation facilitated by glycyl-L-tyrosine: Relation to electronic spectra and transmission electron microscopy images
Booth,Bhargava,Bond,O'Mullane
, p. 12419 - 12426 (2006)
Voltammetric techniques have been introduced to monitor the formation of gold nanoparticles produced via the reaction of the amino acid glycyl-L-tyrosine with Au(III) (bromoaurate) in 0.05 M KOH conditions. The alkaline conditions facilitate amino acid binding to Au(III), inhibit the rate of reduction to Au(0), and provide an excellent supporting electrolyte for voltammetric studies. Data obtained revealed that a range of time-dependent gold solution species are involved in gold nanoparticle formation and that the order in which reagents are mixed is critical to the outcome. Concomitantly with voltammetric measurements, the properties of gold nanoparticles formed are probed by examination of electronic spectra in order to understand how the solution environment present during nanoparticle growth affects the final distribution of the nanoparticles. Images obtained by the ex situ transmission electron microscopy (TEM) technique enable the physical properties of the nanoparticles isolated in the solid state to be assessed. Use of this combination of in situ and ex situ techniques provides a versatile framework for elucidating the details of nanoparticle formation.
Oxidative Mechanochemistry: Direct, Room-Temperature, Solvent-Free Conversion of Palladium and Gold Metals into Soluble Salts and Coordination Complexes
Do, Jean-Louis,Tan, Davin,Fri??i?, Tomislav
supporting information, p. 2667 - 2671 (2018/02/06)
Noble metals are valued, critical elements whose chemical activation or recycling is challenging, and traditionally requires high temperatures, strong acids or bases, or aggressive complexation agents. By using elementary palladium and gold, demonstrated here is the use of mechanochemistry for noble-metal activation and recycling by mild, clean, solvent-free, and room-temperature chemistry. The process leads to direct, efficient, one-pot conversion of the metals, including spent catalysts, into either simple water-soluble salts or metal–organic catalysts.