Welcome to LookChem.com Sign In|Join Free

CAS

  • or

15001-11-3

Post Buying Request

15001-11-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

15001-11-3 Usage

General Description

ETHYL 5-AMINO-1-(4-METHYLPHENYL)-1H-PYRAZOLE-4-CARBOXYLATE is a chemical compound with the molecular formula C15H16N4O2. It is a pyrazole derivative with an ethyl ester group and an amino group attached to a 1,4-substituted phenyl ring. ETHYL 5-AMINO-1-(4-METHYLPHENYL)-1H-PYRAZOLE-4-CARBOXYLATE has potential applications in the pharmaceutical and agrochemical industries due to its biological activities and potential as a building block for the synthesis of bioactive molecules. However, it is important to handle and use this chemical with caution as it may have hazards associated with its handling and usage.

Check Digit Verification of cas no

The CAS Registry Mumber 15001-11-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,5,0,0 and 1 respectively; the second part has 2 digits, 1 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 15001-11:
(7*1)+(6*5)+(5*0)+(4*0)+(3*1)+(2*1)+(1*1)=43
43 % 10 = 3
So 15001-11-3 is a valid CAS Registry Number.
InChI:InChI=1/C13H15N3O2/c1-3-18-13(17)11-8-15-16(12(11)14)10-6-4-9(2)5-7-10/h4-8H,3,14H2,1-2H3

15001-11-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name Ethyl 5-amino-1-(4-methylphenyl)-1H-pyrazole-4-carboxylate

1.2 Other means of identification

Product number -
Other names ETHYL 5-AMINO-1-(4-METHYLPHENYL)-1H-PYRAZOLE-4-CARBOXYLATE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:15001-11-3 SDS

15001-11-3Relevant articles and documents

Novel Pyrazolo[3,4- d]pyrimidin-4-one Derivatives as Potential Antifungal Agents: Design, Synthesis, and Biological Evaluation

Cheng, Xiang,Wang, Wei,Wang, Yunxiao,Xia, Dongguo,Yin, Fang,Liu, Qiaoyun,Luo, Huisheng,Li, Meng,Zhang, Chengqi,Cao, Haiqun,Lv, Xianhai

, p. 11395 - 11405 (2021/10/01)

Plant pathogenic fungi seriously threaten agricultural production. There is an urgent need to develop novel fungicides with low toxicity and high efficiency. In this study, we designed and synthesized 44 pyrazolo[3,4-d]pyrimidin-4-one derivatives and evaluated them for their fungicidal activities. The bioassay data revealed that most of the target compounds possessed moderate to high in vitro antifungal activities. Especially compound g22 exhibited remarkable antifungal activity against Sclerotinia sclerotiorum with an EC50 value of 1.25 mg/L, close to that of commercial fungicide boscalid (EC50 = 0.96 mg/L) and fluopyram (EC50 = 1.91 mg/L). Moreover, compound g22 possessed prominent protective activity against S. sclerotiorum in vivo for 24 h (95.23%) and 48 h (93.78%), comparable to positive control boscalid (24 h (96.63%); 48 h (93.23%)). Subsequent studies indicated that compound g22 may impede the growth and reproduction of S. sclerotiorum by affecting the morphology of mycelium, destroying cell membrane integrity, and increasing cell membrane permeability. In addition, the application of compound g22 did not injure the growth or reproduction of Italian bees. This study revealed that compound g22 is expected to be developed for efficient and safe agricultural fungicides.

Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity

Liu, Hao,Ren, Zi-Li,Wang, Wei,Gong, Jie-Xiu,Chu, Ming-Jie,Ma, Quan-Wei,Wang, Jie-Chun,Lv, Xian-Hai

, p. 81 - 87 (2018/08/04)

The identification of novel Topoisomerase II (Topo II) inhibitors is one of the most attractive directions in the field of bactericide research and development. In our ongoing efforts to pursue the class of inhibitors, six series of 70 novel coumarin-pyrazole carboxamide derivatives were designed and synthesized. As a result of the evaluation against four destructive bacteria, including Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella. Compound 8III-k (MIC = 0.25 mg/L) showed considerable inhibitory activity than ciprofloxacin (MIC = 0.5 mg/L) against Escherichia coli and 8V-c (MIC = 0.05 mg/L) exhibited excellent antibacterial activity than ciprofloxacin (MIC = 0.25 mg/L) against Salmonella. The selected compounds (8III-k, 8V-c and 8V-k) exhibit potent inhibition against Topo II and Topo IV with IC50 values (9.4–25 mg/L). Molecular docking model showed that the compounds 8V-c and 8V-k can bind well to the target by interacting with amino acid residues. It will provide some valuable information for the commercial Topo II inhibiting bactericides.

A clean and rapid synthesis of 5-aminopyrazole-4-carboxylic acid esters and nitriles using montmorillonite K10

Jagath Reddy,Sailaja,Manjula,Srinivasa Rao,Khalilullah,Latha

, p. 385 - 388 (2007/10/03)

A series of 5-aminopyrazole-4-carboxylates (4a-f) and nitriles (5a-f) have been synthesized under heterogeneous catalytic conditions using montmorillonite.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 15001-11-3