17028-03-4Relevant articles and documents
Cutting long syntheses short: Access to non-natural tyrosine derivatives employing an engineered tyrosine phenol lyase
Seisser, Birgit,Zinkl, Rene,Gruber, Karl,Kaufmann, Franz,Hafner, Andreas,Kroutil, Wolfgang
, p. 731 - 736 (2010)
The chemical synthesis of 3-substituted tyrosine derivatives requires a minimum of four steps to access optically enriched material starting from commercial precursors. Attempting to short-cut the cumbersome chemical synthesis of 3-substituted tyrosine derivatives, a single step biocatalytic approach was identified employing the tyrosine phenol lyase from Citrobacter freundii. The enzyme catalyses the hydrolysis of tyrosine to phenol, pyruvate and ammonium as well as the reverse reaction, thus the formation of tyrosine from phenol, pyruvate and ammonium. Since the wild-type enzyme possessed a very narrow substrate spectrum, structure-guided, site-directed mutagenesis was required to change the substrate specificity of this C-C bond forming enzyme. The best variant M379V transformed, for example, o-cresol, o-methoxyphenol and o-chlorophenol efficiently to the corresponding tyrosine derivatives without any detectable side-product. In contrast, all three phenol compounds were non-substrates for the wild-type enzyme. Employing the mutant, various Ltyrosine derivatives (3-Me, 3-OMe, 3-F, 3-Cl) were obtained with complete conversion and excellent enantiomeric excess (>97%) in just a single 'green' step starting from pyruvate and commercially available phenol derivatives.
Biocascade Synthesis of L-Tyrosine Derivatives by Coupling a Thermophilic Tyrosine Phenol-Lyase and L-Lactate Oxidase
Jiang, Yiqi,Ju, Shuyun,Li, Guosi,Lian, Jiazhang,Lin, Jianping,Wu, Mianbin,Xue, Hailong,Yang, Lirong
supporting information, (2020/02/25)
A one-pot biocascade of two enzymatic steps catalyzed by an l-lactate oxidase and a tyrosine phenol-lyase has been successfully developed in the present study. The reaction provides an efficient method for the synthesis of l-tyrosine derivatives, which exhibits readily available starting materials and excellent yields. In the first step, an in situ generation of pyruvate from readily available bio-based l-lactate catalyzed by a highly active l-lactate oxidase from Aerococcus viridans (AvLOX) was developed (using oxygen as oxidant and catalase as hydrogen peroxide removing reagent). Pyruvate thus produced underwent C–C coupling with phenol derivatives as acceptor substrate using specially designed thermophilic tyrosine phenol-lyase mutants from Symbiobacterium toebii (TTPL). Overall, this cascade avoids the high cost and easy decomposition of pyruvate and offered an efficient and environmentally friendly procedure for l-tyrosine derivatives synthesis.
Multienzyme One-Pot Cascade for the Stereoselective Hydroxyethyl Functionalization of Substituted Phenols
Payer, Stefan E.,Pollak, Hannah,Schmidbauer, Benjamin,Hamm, Florian,Juri?i?, Filip,Faber, Kurt,Glueck, Silvia M.
supporting information, p. 5139 - 5143 (2018/09/13)
The operability and substrate scope of a redesigned vinylphenol hydratase as a single biocatalyst or as part of multienzyme cascades using either substituted coumaric acids or phenols as stable, cheap, and readily available substrates are reported.
Biocatalytic One-Pot Synthesis of l-Tyrosine Derivatives from Monosubstituted Benzenes, Pyruvate, and Ammonia
Dennig, Alexander,Busto, Eduardo,Kroutil, Wolfgang,Faber, Kurt
, p. 7503 - 7506 (2015/12/11)
l-Tyrosine derivatives were obtained in >97% ee via a biocatalytic one-pot two-step cascade using substituted benzenes, pyruvate, and NH3 as starting materials. In the first step, monosubstituted arenes were regioselectively hydroxylated in the o-position by monooxygenase P450 BM3 (using O2 as oxidant with NADPH-recycling) to yield the corresponding phenols, which subsequently underwent C-C coupling and simultaneous asymmetric amination with pyruvate and NH3 using tyrosine phenol lyase to furnish l-DOPA surrogates in up to 5.2 g L-1. Instead of analytically pure arenes, crude aromatic gasoline blends containing toluene were used to yield 3-methyl-l-tyrosine in excellent yield (2 g L-1) and >97% ee.
Vinylation of Unprotected Phenols Using a Biocatalytic System
Busto, Eduardo,Simon, Robert C.,Kroutil, Wolfgang
supporting information, p. 10899 - 10902 (2015/09/15)
Readily available substituted phenols were coupled with pyruvate in buffer solution under atmospheric conditions to afford the corresponding para-vinylphenol derivatives while releasing only one molecule of CO2 and water as the by-products. This transformation was achieved by designing a biocatalytic system that combines three biocatalytic steps, namely the C-C coupling of phenol and pyruvate in the presence of ammonia, which leads to the corresponding tyrosine derivative, followed by deamination and decarboxylation. The biocatalytic transformation proceeded with high regioselectivity and afforded exclusively the desired para products. This method thus represents an environmentally friendly approach for the direct vinylation of readily available 2-, 3-, or 2,3-disubstituted phenols on preparative scale (0.5 mmol) that provides vinylphenols in high yields (65-83%).
Synthesis of tyrosine derivatives for saframycin MX1 biosynthetic studies
Schmidt, Eric W.,Nelson, James T.,Fillmore, John P.
, p. 3921 - 3924 (2007/10/03)
Saframycin MX1 and structural relatives are natural anticancer agents isolated from bacteria and marine invertebrates. For biosynthetic studies and to make a library of modified natural products, a series of tyrosine derivatives were synthesized in a conc
Intrinsic deuterium isotope effects on benzylic hydroxylation by tyrosine hydroxylase
Frantom, Patrick A.,Pongdee, Rongson,Sulikowski, Gary A.,Fitzpatrick, Paul F.
, p. 4202 - 4203 (2007/10/03)
Tyrosine hydroxylase (TyrH) is a mononuclear, non-heme iron monooxygenase that catalyzes the pterin-dependent hydroxylation of tyrosine to dihydroxyphenylalanine. When 4-methylphenylalanine is used as a substrate for TyrH, 4-hydroxymethylphenylalanine is
Tyrosine analogues as alternative substrates for protein tyrosine kinase Csk: Insights into substrate selectivity and catalytic mechanism
Kim, Kyonghee,Parang, Keykavous,Lau, Ontario D.,Cole, Philip A.
, p. 1263 - 1268 (2007/10/03)
Protein tyrosine kinases are critical enzymes in cell signal transduction but relatively little is known about the molecular recognition of the tyrosine substrate by these enzymes. Details of tyrosine substrate specificity within the context of a short peptide were investigated for protein tyrosine kinase Csk. It was found that aryl ring functional group substitutions the size of methyl group or smaller were generally well tolerated by the protein tyrosine kinase Csk whereas larger groups caused a decline in substrate efficiency. Extension of the phenol from the peptide backbone by a single methylene was acceptable for phosphorylation whereas removal of a methylene nearly abolished reactivity. Only the L-tyrosine derivative was processed. A negative charge ortho to the phenol hydroxyl was incompatible with substrate reactivity, consistent with previous pH rate profiles which indicated the importance of the neutral phenol. Overall, these studies confirmed the interpretation of a previous linear free energy relationship analysis which suggested that the enzyme followed a dissociative transition state mechanism. Copyright (C) 2000 Elsevier Science Ltd.