17265-04-2Relevant articles and documents
Ru(II) complexes bearing 2,6-bis(benzimidazole-2-yl)pyridine ligands: A new class of catalysts for efficient dehydrogenation of primary alcohols to carboxylic acids and H2in the alcohol/CsOH system
Dai, Zengjin,Luo, Qi,Meng, Xianggao,Li, Renjie,Zhang, Jing,Peng, Tianyou
, p. 11 - 18 (2016/12/16)
Mono-cationic Ru(II)-complexes [Ru(L)X(CH3CN)2]?X 1~4 (1, L = 2,6-bis(benzimidazol-2-yl) pyridine (L1), X = Cl; 2, L = L1, X = OTf; 3, L = 2-(N-benzyl-benzimidazole-2-yl)-6-(benzimidazole-2-yl)pyridine (L2), X = Cl; 4, L = 2,6-bis(N-benzyl-benzimidazole-2-yl)pyridine (L3), X = Cl) were prepared and fully characterized. The two acetonitrile ligands of each complex are coordinated to the metal center cis to each other. Complex 2 was also structurally characterized by X-ray crystallography. It was found that complexes 1~4 can catalyze the acceptorless dehydrogenation of primary alcohols to corresponding carboxylic acids and H2in the basic aqueous solution, and the reactivity follows the order 1 = 2 > 4 > 3. Furthermore, complexes 1 or 2 can efficiently catalyze the conversion of various primary alcohols to carboxylic acid in good yields (72%–98%) and high selectivity in an alcohol/CsOH system (1/1, mol/mol). Using an excess amount of alcohol to CsOH results in the formation of the carboxylic acid in higher yield (up to 100%, based on CsOH) and higher turnover numbers (TON ~ 10000) accompanied by the H2evolution. Complexes 1 and 2 can act as a new class of phosphine- and N-heterocycle carbene free Ru(II) complexes for efficient conversion of primary alcohols to carboxylic acids and H2in a homogeneous system.
Carbon dioxide utilization via carbonate-promoted C-H carboxylation
Banerjee, Aanindeeta,Dick, Graham R.,Yoshino, Tatsuhiko,Kanan, Matthew W.
, p. 215 - 219 (2016/03/22)
Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO32-) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA) - a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO32--promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.