174735-02-5Relevant articles and documents
Synthesis of derivatives of phenanthrene and helicene by improved procedures of photocyclization of stilbenes
Talele, Harish R.,Gohil, Monik J.,Bedekar, Ashutosh V.
, p. 1182 - 1186 (2009)
An improved method has been developed for photocyclization of stilbene to construct phenanthrenes and benzo[c]phenanthrenes. This reaction is promoted by iodine while tetrahydrofuran is used as an efficient and inexpensive scavenger of hydroiodic acid produced during the photocyclization sequence. In another process, cyclohexene is used as a reagent for dehydrogenation step in place of THFI2.
Synthesis, structure, and electronic properties of syn-[2.2]phenanthrenophanes: First observation of their excimer fluorescence at high temperature
Nakamura, Yosuke,Tsuihiji, Takeshi,Mita, Tadahiro,Minowa, Toshiyuki,Tobita, Seiji,Shizuka, Haruo,Nishimura, Jun
, p. 1006 - 1012 (1996)
Two syn-[2.2](1,6)- and -(3,6)phenanthrenophanes, 1a,b, were synthesized for the first time by means of intermolecular [2 + 2] photocycloaddition of the corresponding divinylphenanthrenes. Phenanthrenophanes 1a,b were obtained as mixtures of two (exo,exo and exo,endo) and three (exo,exo, exo,endo, and endo,endo) structural isomers, respectively, which were isolated by reversed-phase HPLC and gel permeation chromatography. All of the isomers, whose structures were characterized mainly on the basis of 1H NMR spectroscopy, were in a syn conformation. X-ray crystallographic analysis of exσ,endo-1a was successful, also in agreement with the results of 1H NMR. Birch reduction of 1b, followed by DDQ oxidation, afforded [4.4](3,6)phenanthrenophane 5b in an anti conformation, due to opening of the cyclobutane rings. The absorption spectra of 1b were relatively similar to that of phenanthrene itself, while those of 1a were rather broadened and red-shifted compared to those of phenanthrene and 1b. In both cases, the spectra were independent of the configuration of the cyclobutane rings. The fluorescence spectra of 1b exhibited sharp vibrational structures, as in phenanthrene, suggesting fluorescence from the locally excited state. On the other hand, 1a afforded a broad and structureless emission due to the excimer fluorescence, even at room temperature. This is the first observation of the excimer emission almost free from the monomer-like emission for phenanthrene derivatives at rather high temperature. Such differences in the absorption and fluorescence spectra between 1a,b can be explained reasonably in terms of differences in the arrangement of the two phenanthrene rings; they are tightly held almost in parallel for 1a, according to the X-ray structural analysis, while tilted by the dihedral angle of ca. 30° for 1b on the basis of MM2 calculations.
Exploring the Photocyclization Pathways of Styrylthiophenes in the Synthesis of Thiahelicenes: When the Theory and Experiment Meet
Baciu, Bianca C.,Vergés, José Antonio,Guijarro, Albert
, p. 5668 - 5679 (2021)
The introduction of thiophene rings to the helical structure of carbohelicenes has electronic effects that may be used advantageously in organic electronics. The performance of these devices is highly dependent on the sulfur atom topology, so a precise knowledge of the synthetic routes that may afford isomeric structures is necessary. We have studied the photocyclization pathway of both 2- and 3-styrylthiophenes on their way to thiahelicenes by experiment and theory. To begin with, the synthesis of stereochemically well-defined 2- and 3-styrylthiophenes allowed us to register first, and simulate later, the UV-vis electronic spectra of these precursors. This information gave us access through time-dependent density functional theory calculations to the very nature of the excited states involved in the photocyclization step and from there to the regio- and stereochemical outcome of the reaction. For the widely known case of a 2-styrylthiophene derivative, the expected naphtho[2,1-b]thiophene type of ring fusion was predicted and experimentally observed by synthesis. On the contrary, 3-styrylthiophene derivatives have been seldom used in synthetic photocyclizations. Among the two possible structural outcomes, only the naphtho[1,2-b]thiophene type of ring fusion was found to be mechanistically sound, and this was actually the only compound observed by synthesis.
Organic electroluminescence device and monoamine compound for organic electroluminescence device
-
Paragraph 0180; 0186-0189; 0209-0213, (2019/07/29)
An organic electroluminescence device and a monoamine compound for an organic electroluminescence device are provided. The monoamine compound is represented by Formula 1. In Formula 1, FR is a phenanthryl group which is substituted with one phenyl group.
The role of electron-transporting Benzo[f]quinoline unit as an electron acceptor of new bipolar hosts for green PHOLEDs
Seo, Junseok,Park, So-Ra,Kim, Mina,Suh, Min Chul,Lee, Jihoon
, p. 959 - 966 (2018/11/26)
We prepared three new compounds [3,6-di(9H-carbazol-9-yl)phenanthrene (3,6-DCP), 2,9-di(9H-carbazol-9-yl)benzo[f]quinoline (2,9-DCBQ), and 3,9-di(9H-carbazol-9-yl)benzo[f]-quinoline (3,9-DCBQ)] containing phenanthrene or benzo[f]quinoline as an electron-withdrawing moiety and a carbazole as electron-donating moiety, respectively, as bipolar hosts for green phosphorescent organic light emitting diodes (PHOLEDs). We intentionally substituted nitrogen atom to the C-3 position of phenanthrene moiety to prepare benzo[f]quinolinegroup. And, we found that it allowed better electron transporting behavior than the phenanthrene moiety. Meanwhile, the benzo[f]quinoline/phenanthrene core moieties significantly improved the thermal stability of those host materials, which exhibited glass transition and decomposition temperatures of 132–139 and 395–427 °C, respectively. The green PHOLEDs which were fabricated with those host materials showed the lowest operating voltage of 4.7 V at 1000 cd/m2 when we used 3,9-DCBQ. Very interestingly, it has an asymmetric structure with completely separated HOMO and LUMO in space. In contrast, 3,6-DCP having phenanthrene and carbazole moieties showed much higher operating voltage of 6.1 V which imply that replacing nitrogen at the C-3 position of phenanthrene improves carrier transport, that is, electron transporting behavior. As a result, the 3,9-DCBQ-based PHOLED showed the best overall performance, exhibiting current and power efficiencies of 48.5 cd/A and 20.6 lm/W, respectively.
Synthesis and characterization of phenanthrene derivatives with anticancer property against human colon and epithelial cancer cell lines
Guédouar, Habiba,Aloui, Faouzi,Beltifa, Asma,Ben Mansour, Hedi,Ben Hassine, Béchir
, p. 841 - 849 (2017/06/20)
A variety of polycyclic aromatic hydrocarbons have been synthesized and structurally characterized in our laboratory. Phenanthrene derivatives were efficiently prepared in excellent yields and high purity via a two-step sequence. Heck coupling yielded the corresponding diarylethenes, followed by classical oxidative photocyclization to achieve the expected phenanthrenes. First, we envisioned to synthesize a variety of substituted phenanthrenequinones. Second, we investigated the possibility of a dibenz[a,c]phenazine formation by addition of o-phenylenediamine after completion of the oxidation process. Moreover, because phenanthrenequinones are available so simply, it is likely that other uses will be found for these compounds. For example, 9,10-phenanthrenequinone can be sequentially reduced, alkylated, acetylated, and sulfonated. All the synthesized derivatives were evaluated for cytotoxic activity in vitro against the human epidermoid carcinoma epithelial cells Hep-2 and human colon carcinoma cells Caco-2 using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. From the structure–activity point of view, position and nature of the electron donating and electron withdrawing functional groups attached to the phenanthrene skeleton may contribute to the anticancer action. Interestingly, the analysis of the IC50 values suggests that most compounds exerted cytotoxic effects with selectivity against both cancer cells. Among them, methyl 8-methyl-9,10-phenanthrenequinone-3-carboxylate 11d showed the highest potency with IC50 values of 2.81 and 0.97 μg/mL.
Expeditious synthesis of helicenes using an improved protocol of photocyclodehydrogenation of stilbenes
Talele, Harish R.,Chaudhary, Anju R.,Patel, Parthiv R.,Bedekar, Ashutosh V.
, p. 15 - 37 (2011/06/19)
An improved procedure has been developed for photodehydrocyclization of stilbenes for the synthesis of phenanthrenes and helicenes. This procedure involves the use of THF as a scavenger of hydriodic acid produced during iodine mediated photodehydrocyclization. The use of THF is advantageous due to its higher boiling point, lower cost and easy availability as compared to propylene oxide. The method is applied to synthesize a number of phenanthrenes and helicenes. ARKAT-USA, Inc.
Synthesis and resolution of 2-(diphenylphosphino)heptahelicene
El Abed, Riadh,Aloui, Faouzi,Genêt, Jean-Pierre,Ben Hassine, Béchir,Marinetti, Angela
, p. 1156 - 1160 (2007/10/03)
Palladium catalysed Heck couplings have been applied to the two-step synthesis of a stilbene derivative bearing a diphenylphosphine oxide function which represents a suitable precursor for the photochemical generation of the corresponding [7]-helicene. After reduction of the phosphine oxide, resolution of the monodentate helical phosphine has been performed by means of the ortho-metallated (R)-1-(naphthyl)ethylamine-palladium complex. A ruthenium complex of (heptahelicen-2-yl)diphenylphosphine has also been prepared and fully characterized.