Welcome to LookChem.com Sign In|Join Free

CAS

  • or

18800-30-1

Post Buying Request

18800-30-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

18800-30-1 Usage

Chemical Properties

white to beige crystalline powder or crystals

Check Digit Verification of cas no

The CAS Registry Mumber 18800-30-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,8,8,0 and 0 respectively; the second part has 2 digits, 3 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 18800-30:
(7*1)+(6*8)+(5*8)+(4*0)+(3*0)+(2*3)+(1*0)=101
101 % 10 = 1
So 18800-30-1 is a valid CAS Registry Number.
InChI:InChI=1/C13H8ClNOS/c14-13(16)15-9-5-1-3-7-11(9)17-12-8-4-2-6-10(12)15/h1-8H

18800-30-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-bromo-4-(2-bromoethoxy)benzene

1.2 Other means of identification

Product number -
Other names 2-Bromoethyl p-bromophenyl ether

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:18800-30-1 SDS

18800-30-1Relevant articles and documents

Synthesis of Novel Aryloxyethylamine Derivatives and Evaluation of Their in Vitro and in Vivo Neuroprotective Activities

Gao, Yarong,Qi, Changyong,Wu, Bin,Xu, Yi,Zhong, Yan

, (2020)

A series of aryloxyethylamine derivatives were designed, synthesized and evaluated for their biological activity. Their structures were confirmed by 1H-NMR, 13C-NMR, FT-IR and HR-ESI-MS. The preliminary screening of neuroprotection of compounds in vitro was detected by MTT, and the anti-ischemic activity in vivo was tested using bilateral common carotid artery occlusion in mice. Most of these compounds showed potential neuroprotective effects against the glutamate-induced cell death in differentiated rat pheochromocytoma cells (PC12 cells), especially for (4-fluorophenyl){1-[2-(4-methoxyphenoxy)ethyl]piperidin-4-yl}methanone, {1-[2-(4-methoxyphenoxy)ethyl]piperidin-4-yl}(4-methoxyphenyl)methanone, (4-bromophenyl){1-[2-(4-methoxyphenoxy)ethyl]piperidin-4-yl}methanone, {1-[2-(4-chlorophenoxy)ethyl]piperidin-4-yl}(4-chlorophenyl)methanone, (4-chlorophenyl)(1-{2-[(naphthalen-2-yl)oxy]ethyl}piperidin-4-yl)methanone, (4-chlorophenyl){1-[2-(4-methoxyphenoxy)ethyl]piperidin-4-yl}methanone and {1-[2-(4-bromophenoxy)ethyl]piperidin-4-yl}(4-chlorophenyl)methanone, which exhibited potent protection of PC12 cells at three doses (0.1, 1.0, 10 μM). Compounds (4-fluorophenyl){1-[2-(4-methoxyphenoxy)ethyl]piperidin-4-yl}methanone, (4-fluorophenyl){1-[2-(naphthalen-2-yloxy)ethyl]piperidin-4-yl}methanone, {1-[2-(4-methoxyphenoxy)ethyl]piperidin-4-yl}(4-methoxyphenyl)methanone and {1-[2-(4-chlorophenoxy)ethyl]piperidin-4-yl}(4-chlorophenyl)methanone possessed the significant prolongation of the survival time of mice subjected to acute cerebral ischemia and decreased the mortality rate at all five doses tested (200, 100, 50, 25, 12.5 mg/kg) and had significant neuroprotective activity. In addition, (4-fluorophenyl){1-[2-(4-methoxyphenoxy)ethyl]piperidin-4-yl}methanone, {1-[2-(4-methoxyphenoxy)ethyl]piperidin-4-yl}(4-methoxyphenyl)methanone and {1-[2-(4-chlorophenoxy)ethyl]piperidin-4-yl}(4-chlorophenyl)methanone possessed outstanding neuroprotection in vitro and in vivo. These compounds can be used as a promising neuroprotective agents for future development of new anti-ischemic stroke agents. Basic structure–activity relationships are also presented.

Synthesis of N-Alkyl Anilines from Arenes via Iron-Promoted Aromatic C-H Amination

Falk, Eric,Gasser, Valentina C. M.,Morandi, Bill

supporting information, p. 1422 - 1426 (2021/03/08)

We report both an intermolecular C-H amination of arenes to access N-methylanilines and an intramolecular variant for the synthesis of tetrahydroquinolines. A newly developed, highly electrophilic aminating reagent was key for the direct synthesis of unprotected N-methylanilines from simple arenes. The reactions display a broad functional group tolerance and employ catalytic amounts of a benign iron salt under mild reaction conditions.

Spin Delocalization, Polarization, and London Dispersion Forces Govern the Formation of Diradical Pimers

Ellern, Arkady,Peterson, Joshua P.,Winter, Arthur H.

supporting information, p. 5304 - 5313 (2020/04/08)

Some free radicals are stable enough to be isolated, but most are either unstable transient species or exist as metastable species in equilibrium with a dimeric form, usually a spin-paired sigma dimer or a pi dimer (pimer). To gain insight into the different modes of dimerization, we synthesized and evaluated a library of 15 aryl dicyanomethyl radicals in order to probe what structural and molecular parameters lead to σ- versus π-dimerization. We evaluated the divergent dimerization behavior by measuring the strength of each radical association by variableerature electron paramagnetic resonance spectroscopy, determining the mode of dimerization (σ- or π-dimer) by UV-vis spectroscopy and X-ray crystallography, and performing computational analysis. We evaluated three different hypotheses to explain the difference in the dimerization behavior: (1) that the dimerization behavior is dictated by radical spin densities; (2) that it is dictated by radical polarizability; (3) that it is dictated by London dispersion stabilization of the pimer. However, no single parameter model in itself was predictive. Two-parameter models incorporating either the computed degree of spin delocalization or the radical polarizability as well as computed estimates for the attractive London dispersion forces in the π-dimers lead to improved forecasts of σ- vs π-dimerization mode, and suggest that a balance of spin delocalization of the isolated radical as well as attractive forces between the stacked radicals, govern the formation of diradical pimers.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 18800-30-1