2039-70-5Relevant articles and documents
Action of Electron-Accepting Quenchers in Photoisomerization of Naphthylethylenes in Polar and Nonpolar Solvents
Oguchi, Takahisa,Arai, Tatsuo,Sakuragi, Hirochika,Tokumaru, Katsumi
, p. 2395 - 2400 (1987)
The quantum yield of trans-cis isomerization of 3,3-dimethyl-1-(2-naphthyl)-1-butene was measured in the presence of various electron-accepting quenchers in benzene or in acetonitrile.In benzene the quantum yield was increased by addition of some of the quenchers; however, in acetonitrile it was decreased under similar conditions.This was attributed to more efficient formation of olefin triplets through an exciplex in benzene than through radical ion pairs in acetonitrile.
Pd-Catalyzed Coupling of N-Tosylhydrazones with Benzylic Phosphates: Toward the Synthesis of Di- or Tri-Substituted Alkenes
Zhang, Kena,Provot, Olivier,Alami, Mouad,Tran, Christine,Hamze, Abdallah
, p. 1249 - 1261 (2022/02/07)
This study shows that various di- and tri-substituted alkenes with high chemoselectivity were obtained in good to high yields by coupling N-tosylhydrazones (NTHs) with benzylic phosphates as electrophilic partners. The obtained new catalytic system consis
METHODS OF ARENE ALKENYLATION
-
Page/Page column 18; 21-22; 42; 44-45, (2021/11/26)
The present disclosure provides for a rhodium-catalyzed oxidative arene alkenylation from arenes and styrenes to prepare stilbene and stilbene derivatives. For example, the present disclosure provides for method of making arenes or substituted arenes, in particular stilbene and stilbene derivatives, from a reaction of an optionally substituted arene and/or optionally substituted styrene. The reaction includes a Rh catalyst or Rh pre-catalyst material and an oxidant, where the Rh catalyst or Rh catalyst formed Rh pre-catalyst material selectively functionalizes CH bond on the arene compound (e.g., benzene or substituted benzene).
Dinuclear cobalt complex-catalyzed stereodivergent semireduction of alkynes: Switchable selectivities controlled by H2O
Chen, Ke,Zhu, Hongdan,Li, Yuling,Peng, Qian,Guo, Yinlong,Wang, Xiaoming
, p. 13696 - 13705 (2021/11/16)
Catalytic semireduction of internal alkynes to alkenes is very important for organic synthesis. Although great success has been achieved in this area, switchable Z/E stereoselectivity based on a single catalyst for the semireduction of internal alkynes is a longstanding challenge due to the multichemo- and stereoselectivity, especially based on less-expensive earth-abundant metals. Herein, we describe a switchable semireduction of alkynes to (Z)- or (E)-alkenes catalyzed by a dinuclear cobalt complex supported by a macrocyclic bis pyridyl diimine (PDI) ligand. It was found that cis-reduction of the alkyne occurs first and the Z-E alkene stereoisomerization process is formally controlled by the amount of H2O, since the concentration of H2O may influence the catalytic activity of the catalyst for isomerization. Therefore, this protocol provides a facile way to switch to either the (Z)- or (E)-olefin isomer in a single transformation by adjusting the amount of water.
Aza-peterson olefinations: Rapid synthesis of (E)-alkenes
Britten, Thomas K.,Basson, Ashley J.,Roberts, Dean D.,McLaughlin, Mark G.
, p. 3535 - 3544 (2021/06/03)
An aza-Peterson olefination methodology to access 1,3-dienes and stilbene derivatives from the corresponding allyl- or benzyltrimethylsilane is described. Silanes can be deprotonated using Schlosser's base and added to N -phenyl imines or ketones to directly give the desired products in high yields.
N-Heterocyclic carbene palladium (II)-pyridine (NHC-Pd (II)-Py) complex catalyzed heck reactions
Li, Dan,Tian, Qingqiang,Wang, Xuetong,Wang, Qiang,Wang, Yin,Liao, Siwei,Xu, Ping,Huang, Xin,Yuan, Jianyong
supporting information, p. 2041 - 2052 (2021/05/25)
A mild, efficient, and practical catalytic system for the synthesis of highly privileged stilbene pharmacophores is reported. This system uses N-heterocyclic carbene palladium (II) Pyridine (NHC-Pd (II)-Py) complex to catalyze the formation of carbon-carbon bonds between olefin derivatives and various bromide. This simple, gentle and user-friendly method can offer a variety of stilbene products in excellent yields under solvent-free condition. And its scale-up reaction has excellent yield and this system can be applied to industrial fields. The utility of this method is highlighted by its universality and modular synthesis of a series of bioactive molecules or important medical intermediates.
An Amine-Assisted Ionic Monohydride Mechanism Enables Selective Alkyne cis-Semihydrogenation with Ethanol: From Elementary Steps to Catalysis
Huang, Zhidao,Wang, Yulei,Leng, Xuebing,Huang, Zheng
supporting information, p. 4824 - 4836 (2021/04/07)
The selective synthesis of Z-alkenes in alkyne semihydrogenation relies on the reactivity difference of the catalysts toward the starting materials and the products. Here we report Z-selective semihydrogenation of alkynes with ethanol via a coordination-induced ionic monohydride mechanism. The EtOH-coordination-driven Cl- dissociation in a pincer Ir(III) hydridochloride complex (NCP)IrHCl (1) forms a cationic monohydride, [(NCP)IrH(EtOH)]+Cl-, that reacts selectively with alkynes over the corresponding Z-alkenes, thereby overcoming competing thermodynamically dominant alkene Z-E isomerization and overreduction. The challenge for establishing a catalytic cycle, however, lies in the alcoholysis step; the reaction of the alkyne insertion product (NCP)IrCl(vinyl) with EtOH does occur, but very slowly. Surprisingly, the alcoholysis does not proceed via direct protonolysis of the Ir-C(vinyl) bond. Instead, mechanistic data are consistent with an anion-involved alcoholysis pathway involving ionization of (NCP)IrCl(vinyl) via EtOH-for-Cl substitution and reversible protonation of Cl- ion with an Ir(III)-bound EtOH, followed by β-H elimination of the ethoxy ligand and C(vinyl)-H reductive elimination. The use of an amine is key to the monohydride mechanism by promoting the alcoholysis. The 1-amine-EtOH catalytic system exhibits an unprecedented level of substrate scope, generality, and compatibility, as demonstrated by Z-selective reduction of all alkyne classes, including challenging enynes and complex polyfunctionalized molecules. Comparison with a cationic monohydride complex bearing a noncoordinating BArF- ion elucidates the beneficial role of the Cl- ion in controlling the stereoselectivity, and comparison between 1-amine-EtOH and 1-NaOtBu-EtOH underscores the fact that this base variable, albeit in catalytic amounts, leads to different mechanisms and consequently different stereoselectivity.
Tandem Acceptorless Dehydrogenative Coupling-Decyanation under Nickel Catalysis
Babu, Reshma,Balaraman, Ekambaram,Midya, Siba P.,Subaramanian, Murugan,Yadav, Vinita
, p. 7552 - 7562 (2021/06/28)
The development of new catalytic processes based on abundantly available starting materials by cheap metals is always a fascinating task and marks an important transition in the chemical industry. Herein, a nickel-catalyzed acceptorless dehydrogenative coupling of alcohols with nitriles followed by decyanation of nitriles to access diversely substituted olefins is reported. This unprecedented C=C bond-forming methodology takes place in a tandem manner with the formation of formamide as a sole byproduct. The significant advantages of this strategy are the low-cost nickel catalyst, good functional group compatibility (ether, thioether, halo, cyano, ester, amino, N/O/S heterocycles; 43 examples), synthetic convenience, and high reaction selectivity and efficiency.
Mizoroki-Heck Reaction of Unstrained Aryl Ketones via Ligand-Promoted C-C Bond Olefination
Wang, Mei-Ling,Xu, Hui,Li, Han-Yuan,Ma, Biao,Wang, Zhen-Yu,Wang, Xing,Dai, Hui-Xiong
, p. 2147 - 2152 (2021/04/05)
Mizoroki-Heck reaction of unstrained aryl ketone with acrylate/styrene is accomplished via palladium-catalyzed ligand-promoted C-C bond cleavage. Various (hetero)aryl ketones are compatible in the reaction, affording the alkene product in good to excellent yields. Further applications in the late-stage olefination of some drugs, natural products, and fragrance-derived aryl ketones demonstrate the synthetic utility of this protocol. By employing ketone as both the directing group and the leaving group, 1,2-bifunctionalization is achieved via sequential ortho-C-H alkylation/ipso-Heck olefination.
A Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Alkynes to (E)-Alkenes with Ethanol
Chen, Dafa,Gong, Dawei,Hu, Bowen,Kong, Degong,Xia, Haiping,Yang, Weiwei
, (2020/03/19)
Four Ru(II)-NC complexes were tested as catalysts for semihydrogenation of internal alkynes to (E)-alkenes with ethanol, and the complex {(C5H4N)(C6H4)}RuCl(CO)(PPh3)2 (1a) showed the highest activity. The reactions proceeded well with 1 mol % catalyst loading and 0.1 equiv of t-BuONa at 110 °C for 1 h, and 32 alkenes were synthesized with excellent E:Z selectivity. This is the first ruthenium-catalyzed semihydrogenation of internal alkynes to (E)-alkenes using ethanol as the hydrogen donor.