Welcome to LookChem.com Sign In|Join Free

CAS

  • or

20488-61-3

Post Buying Request

20488-61-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

20488-61-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 20488-61-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,0,4,8 and 8 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 20488-61:
(7*2)+(6*0)+(5*4)+(4*8)+(3*8)+(2*6)+(1*1)=103
103 % 10 = 3
So 20488-61-3 is a valid CAS Registry Number.

20488-61-3Relevant articles and documents

Design of phase-transition molecular solar thermal energy storage compounds: compact molecules with high energy densities

Qiu, Qianfeng,Gerkman, Mihael A.,Shi, Yuran,Han, Grace G. D.

, p. 9458 - 9461 (2021/09/22)

A series of compact azobenzene derivatives were investigated as phase-transition molecular solar thermal energy storage compounds that exhibit maximum energy storage densities around 300 J g?1. The relative size and polarity of the functional g

Calculated oxidation potentials predict reactivity in Baeyer-Mills reactions

Gingrich, Phillip W.,Olson, David E.,Tantillo, Dean J.,Tombari, Robert J.,Tuck, Jeremy R.,Yardeny, Noah

supporting information, p. 7575 - 7580 (2021/09/22)

Azobenzenes are widely used as dyes and photochromic compounds, with the Baeyer-Mills reaction serving as the most common method for their preparation. This transformation is often plagued by low yields due to the formation of undesired azoxybenzene. Here, we explore electronic effects dictating the formation of the azoxybenzene side-product. Using calculated oxidation potentials, we were able to predict reaction outcomes and improve reaction efficiency simply by modulating the oxidation potential of the arylamine component.

A photochromic agonist for μ-opioid receptors

Schoenberger, Matthias,Trauner, Dirk

, p. 3264 - 3267 (2014/04/03)

Opioid receptors (ORs) are widely distributed in the brain, the spinal cord, and the digestive tract and play an important role in nociception. All known ORs are G-protein-coupled receptors (GPCRs) of family A. Another well-known member of this family, rhodopsin, is activated by light through the cis/trans isomerization of a covalently bound chromophore, retinal. We now show how an OR can be combined with a synthetic azobenzene photoswitch to gain light sensitivity. Our work extends the reach of photopharmacology and outlines a general strategy for converting Family A GPCRs, which account for the majority of drug targets, into photoreceptors. Lighting up the opioid receptor: Photofentanyl-2 is a photochromic version of the well-known analgesic fentanyl. It is a potent agonist in the dark (or when illuminated with blue light) and loses activity when irradiated with UV light. It can be used to optically control the μ-opioid receptor, converting a G-protein-coupled receptor (GPCR) into a photoreceptor.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 20488-61-3