20511-03-9Relevant articles and documents
Design, green synthesis, antioxidant activity screening, and evaluation of protective effect on cerebral ischemia reperfusion injury of novel monoenone monocarbonyl curcumin analogs
He, Wenfei,Wang, Jingsong,Jin, Qiling,Zhang, Jiafeng,Liu, Yugang,Jin, Zewu,Wang, Hua,Hu, Linya,Zhu, Lu,Shen, Mengya,Huang, Lili,Huang, Shengwei,Li, Wulan,Zhuge, Qichuan,Wu, Jianzhang
, (2021/07/06)
Antioxidants with high efficacy and low toxicity have the potential to treat cerebral ischemia reperfusion injury (CIRI). Dienone monocarbonyl curcumin analogs (DMCA) capable of overcoming the instability and pharmacokinetic defects of curcumin possess notable antioxidant activity but are found to be significantly toxic. In this study, a novel skeleton of the monoenone monocarbonyl curcumin analogue sAc possessing reduced toxicity and improved stability was designed on the basis of the DMCA skeleton. Moreover, 32 sAc analogs were obtained by applying a green, simple, and economical synthetic method. Multiple sAc analogs with an antioxidant protective effect in PC12 cells were screened using an H2O2-induced oxidative stress damage model, and quantitative evaluation of structure–activity relationship (QSAR) model with regression coefficient of R2 = 0.918921 was built through random forest algorithm (RF). Among these compounds, the optimally active compound sAc15 elicited a potent protective effect on cell growth of PC12 cells by effectively eliminating ROS generation in response to oxidative stress injury by activating the Nrf2/HO-1 antioxidant signaling pathway. In addition, sAc15 exhibited good protection against CIRI in the mice middle cerebral artery occlusion (MCAO) model. In this paper, we provide a novel class of antioxidants and a potential compound for stroke treatment.
8-Hydroxyquinolin-2(1H)-one analogues as potential β2-agonists: Design, synthesis and activity study
Xing, Gang,Zhi, Zhengxing,Yi, Ce,Zou, Jitian,Jing, Xuefeng,Yiu-Ho Woo, Anthony,Lin, Bin,Pan, Li,Zhang, Yuyang,Cheng, Maosheng
, (2021/07/19)
β2-Agonists that bind to plasmalemmal β2-adrenoceptors causing cAMP accumulation are widely used as bronchodilators in chronic respiratory diseases. Here, we designed and synthesized a group of 8-hydroxyquinolin-2(1H)-one analogues and studied their β2-agonistic activities with a cellular cAMP assay. Compounds B05 and C08 were identified as potent (EC50 2-agonists among the compounds tested. They behaved as partial β2-agonists in non-overexpressed HEK293 cells, and possessed rapid smooth muscle relaxant actions and long duration of action in isolated guinea pig tracheal strip preparations. In summary, B05 and C08 are β2-agonists with potential applicability in chronic respiratory diseases.
Discovery and Characterization of Pure RhlR Antagonists against Pseudomonas aeruginosa Infections
Nam, SangJin,Ham, So-Young,Kwon, Hongmok,Kim, Han-Shin,Moon, Suhyun,Lee, Jeong-Hoon,Lim, Taehyeong,Son, Sang-Hyun,Park, Hee-Deung,Byun, Youngjoo
supporting information, p. 8388 - 8407 (2020/09/21)
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic human pathogen that forms biofilms and produces virulence factors via quorum sensing (QS). Blocking the QS system in P. aeruginosa is an excellent strategy to reduce biofilm formation and the production of virulence factors. RhlR plays an essential role in the QS system of P. aeruginosa. We synthesized 55 analogues based on the chemical structure of 4-gingerol and evaluated their RhlR inhibitory activities using the cell-based reporter strain assay. Comprehensive structure-activity relationship studies identified the alkynyl ketone 30 as the most potent RhlR antagonist. This compound displayed selective RhlR antagonism over LasR and PqsR, strong inhibition of biofilm formation, and reduced production of virulence factors in P. aeruginosa. Furthermore, the survival rate of Tenebrio molitor larvae treated with 30 in vivo greatly improved. Therefore, compound 30, a pure RhlR antagonist, can be utilized for developing QS-modulating molecules in the control of P. aeruginosa infections.
Synthesis and antioxidant activity of caffeic acid derivatives
Sidoryk, Katarzyna,Jaromin, Anna,Filipczak, Nina,Cmoch, Piotr,Cybulski, Marcin
, (2018/09/10)
A series of caffeic acid derivatives were synthesized via a modified Wittig reaction which is a very important tool in organic chemistry for the construction of unsaturated carbon–carbon bonds. All reactions were performed in water medium at 90?C. The aqueous Wittig reaction worked best when one unprotected hydroxyl group was present in the phenyl ring. The olefinations in the aqueous conditions were also conducted with good yields in the presence of two unprotected hydroxyl groups. When the number of the hydroxyl groups was increased to three, the reaction yields were worse, and the derivatives 12, 13, and 18 were obtained with 74%, 37%, and 70% yields, respectively. Nevertheless, the Wittig reaction using water as the essential medium is an elegant one-pot synthesis and a greener method, which can be a safe alternative for implementation in organic chemistry. The obtained compounds were tested for their antioxidant activity, and 12, 13, and 18 showed the highest activities. Moreover, all synthesized compounds displayed no cytotoxicity, and can therefore be used in the pharmaceutical or cosmetic industry.
Poly(N-isopropylacrylamide-co-l-proline)-catalyzed Claisen-Schmidt and Knoevenagel condensations: Unexpected enhanced catalytic activity of the polymer catalyst
Zhang, Hao,Han, Mengting,Chen, Tian,Xu, Lin,Yu, Lei
, p. 48214 - 48221 (2017/11/03)
The polymer catalyst is more effective than the corresponding monomer catalyst? Yes! The proline-modified polymer, poly(N-isopropylacrylamide-co-l-proline), was unexpectedly found to be more effective than the corresponding monomer l-proline catalyst in Claisen-Schmidt and Knoevenagel condensation reactions. 1H NMR, GC analysis and control reactions revealed that this abnormal phenomenon might be attributed to an enhanced concentration of the reactant on the surface of the polymer catalyst, which might be due to adsorption of the reactants to the polymer through hydrogen-bonding of the proline moiety with the reactants. This new polymer catalyst was so robust that it could be reused at least 10 times without deactivation. The polymer-catalyzed method was rather tolerant of substrates bearing sensitive groups that are usually incompatible with conventional acid- or base-catalyzed methods, reducing the protection-deprotection steps of the substrates.
Retro-curcuminoids as mimics of dehydrozingerone and curcumin: Synthesis, NMR, X-ray, and cytotoxic activity
Obregón-Mendoza, Marco A.,Estévez-Carmona, María Mirian,Hernández-Ortega, Simón,Soriano-García, Manuel,Ramírez-Apan, María Teresa,Orea, Laura,Pilotzi, Hugo,Gnecco, Dino,Cassani, Julia,Enríquez, Raúl G.
, (2017/01/24)
Curcumin and its derivatives have been extensively studied for their remarkable medicinal properties, and their chemical synthesis has been an important step in the optimization of well-controlled laboratory production. A family of new compounds that mimic the structure of curcumin and curcuminoids, here named retro-curcuminoids (7-14), was synthesized and characterized using 1D 1H- and 13C-NMR, IR, and mass spectrometry; the X-ray structure of 7, 8, 9, 10, 12, 13, and 14 are reported here for the first time. The main structural feature of these compounds is the reverse linkage of the two aromatic moieties, where the acid chloride moiety is linked to the phenolic group while preserving α,β-unsaturated ketone functionality. The cytotoxic screening of 7, 8, 9, and 10 at 50 and 10 μg/mL was carried out with human cancer cell lines K562, MCF-7, and SKLU-1. Lipid peroxidation on rat brain was also tested for compounds 7 and 10. Compounds 7, 8, and 10 showed relevant cytotoxic activity against these cancer cell lines, and 10 showed a protective effect against lipid peroxidation. The molecular resemblance to curcuminoids and analogs with ortho substituents suggests a potential source of useful bioactive compounds.
Discovery of New Monocarbonyl Ligustrazine-Curcumin Hybrids for Intervention of Drug-Sensitive and Drug-Resistant Lung Cancer
Ai, Yong,Zhu, Bin,Ren, Caiping,Kang, Fenghua,Li, Jinlong,Huang, Zhangjian,Lai, Yisheng,Peng, Sixun,Ding, Ke,Tian, Jide,Zhang, Yihua
, p. 1747 - 1760 (2016/03/25)
The elevation of oxidative stress preferentially in cancer cells by inhibiting thioredoxin reductase (TrxR) and/or enhancing reactive oxygen species (ROS) production has emerged as an effective strategy for selectively targeting cancer cells. In this study, we designed and synthesized 21 ligustrazine-curcumin hybrids (10a-u). Biological evaluation indicated that the most active compound 10d significantly inhibited the proliferation of drug-sensitive (A549, SPC-A-1, LTEP-G-2) and drug-resistant (A549/DDP) lung cancer cells but had little effect on nontumor lung epithelial-like cells (HBE). Furthermore, 10d suppressed the TrxR/Trx system and promoted intracellular ROS accumulation and cancer cell apoptosis. Additionally, 10d inhibited the NF-κB, AKT, and ERK signaling, P-gp-mediated efflux of rhodamine 123, P-gp ATPase activity, and P-gp expression in A549/DDP cells. Finally, 10d repressed the growth of implanted human drug-resistant lung cancer in mice. Together, 10d acts a novel TrxR inhibitor and may be a promising candidate for intervention of lung cancer.
NOVEL METAL FREE PROCESS FOR ALLYLIC OXIDATION
-
Page/Page column 13, (2015/02/25)
The patent discloses a novel metal free process for the preparation of corresponding phenol and ketone via allylic oxidation of substituted cyclohexenes. Air is used as oxidant in the present process and can be used as such or optionally selected from pure oxygen or atmospheric oxygen. Moreover, the process of the present invention utilizes easily available starting materials and is a green eco-friendly, convenient and economical process with high yield of >60 % and high selectivity
Synthesis, cytotoxicity against human oral cancer KB cells and structure-activity relationship studies of trienone analogues of curcuminoids
Chuprajob, Thipphawan,Changtam, Chatchawan,Chokchaisiri, Ratchanaporn,Chunglok, Warangkana,Sornkaew, Nilubon,Suksamrarn, Apichart
supporting information, p. 2839 - 2844 (2014/06/10)
A general method for the synthesis of substituted (1E,4E,6E)-1,7- diphenylhepta-1,4,6-trien-3-ones, based on the aldol condensations of substituted 4-phenylbut-3-en-2-ones and substituted 3-phenylacrylaldehydes, was achieved. The natural trienones 4 and 5 have been synthesized by this method, together with the trienone analogues 9-20. These analogues were evaluated for their cytotoxic activity against human oral cancer KB cell line. The structure-activity relationship study has indicated that the analogues with the 1,4,6-trien-3-one function are more potent than the curcuminoid-type function. Analogues with meta-oxygen function on the aromatic rings are more potent than those in the ortho- and para-positions. Free phenolic hydroxy group is more potent than the corresponding methyl ether analogues. Among the potent trienones, compounds 11, 18 and 20 were more active than the anticancer drug ellipticine. All compounds were also evaluated against the non-cancerous Vero cells and it was found that compounds 11, 12 and 17 were much less toxic than curcumin (1); they showed high selectivity indices of 35.46, 33.46 and 31.68, respectively. These analogues are regarded as the potent trienones for anti-oral cancer study.
Design, synthesis and in vitro evaluation against human cancer cells of 5-methyl-5-styryl-2,5-dihydrofuran-2-ones, a new series of goniothalamin analogues
Bruder, Marjorie,Vendramini-Costa, Débora Barbosa,De Carvalho, Jo?o Ernesto,Pilli, Ronaldo Aloise
, p. 5107 - 5117 (2013/09/02)
The present work describes the preparation of a novel series of compounds based on the structure of goniothalamin (1), a natural styryl lactone with known cytotoxic and antiproliferative activities against a variety of cancer cell lines. A focused library of 17 goniothalamin analogues displaying the 5-methyl-2,5-dihydrofuran-2-one motif were prepared, and their cytotoxicity evaluated. While the analogues bearing methoxy and/or hydroxy groups on the aromatic moiety usually were at least three times less potent than the lead compound (1), ortho and para-trifluoromethyl analogues 10 and 11 exhibited levels of cytotoxicity similar to goniothalamin (1) against most cancer cell lines evaluated. One could suggest that the electronic effect of the trifluoromethyl group activates the inhibitor's electrophilic site via reduction of the electron density of the α,β-unsaturated ester oxygen atom. These results provide new information on the structure activity relationship of these α,β-unsaturated styryl lactones, thereby further focusing the design of novel candidates.