Welcome to LookChem.com Sign In|Join Free

CAS

  • or

205259-41-2

Post Buying Request

205259-41-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

205259-41-2 Usage

General Description

Benzyl 2-amino-4-(benzyloxy)-5-methoxybenzoate is a chemical compound with the molecular formula C28H25NO4. It is a benzyl ester derivative of 2-amino-4-(benzyloxy)-5-methoxybenzoic acid. Benzyl 2-amino-4-(benzyloxy)-5-methoxybenzoate is commonly used in organic synthesis and medicinal chemistry as a building block for the synthesis of various pharmaceuticals and bioactive molecules. It may also have potential applications in the development of new drug candidates and may exhibit biological activity, although further research is needed to fully understand its properties and potential uses.

Check Digit Verification of cas no

The CAS Registry Mumber 205259-41-2 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,0,5,2,5 and 9 respectively; the second part has 2 digits, 4 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 205259-41:
(8*2)+(7*0)+(6*5)+(5*2)+(4*5)+(3*9)+(2*4)+(1*1)=112
112 % 10 = 2
So 205259-41-2 is a valid CAS Registry Number.
InChI:InChI=1/C22H21NO4/c1-25-20-12-18(22(24)27-15-17-10-6-3-7-11-17)19(23)13-21(20)26-14-16-8-4-2-5-9-16/h2-13H,14-15,23H2,1H3

205259-41-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name benzyl 2-amino-5-methoxy-4-phenylmethoxybenzoate

1.2 Other means of identification

Product number -
Other names 2-amino-4-benzyloxy-5-methoxybenzoic acid benzyl ester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:205259-41-2 SDS

205259-41-2Relevant articles and documents

Fluorine-containing 6,7-dialkoxybiaryl-based inhibitors for phosphodiesterase 10 A: Synthesis and in vitro evaluation of inhibitory potency, selectivity, and metabolism

Schwan, Gregor,Barbar Asskar, Ghadir,Hoefgen, Norbert,Kubicova, Lenka,Funke, Uta,Egerland, Ute,Zahn, Michael,Nieber, Karen,Scheunemann, Matthias,Straeter, Norbert,Brust, Peter,Briel, Detlef

, p. 1476 - 1487 (2014/07/21)

Based on the potent phosphodiesterase 10 A (PDE10A) inhibitor PQ-10, we synthesized 32 derivatives to determine relationships between their molecular structure and binding properties. Their roles as potential positron emission tomography (PET) ligands were evaluated, as well as their inhibitory potency toward PDE10A and other PDEs, and their metabolic stability was determined in vitro. According to our findings, halo-alkyl substituents at position 2 of the quinazoline moiety and/or halo-alkyloxy substituents at positions 6 or 7 affect not only the compounds′ affinity, but also their selectivity toward PDE10A. As a result of substituting the methoxy group for a monofluoroethoxy or difluoroethoxy group at position 6 of the quinazoline ring, the selectivity for PDE10A over PDE3A increased. The same result was obtained by 6,7-difluoride substitution on the quinoxaline moiety. Finally, fluorinated compounds (R)-7-(fluoromethoxy)-6-methoxy-4-(3-(quinoxaline-2-yloxy)pyrrolidine-1-yl) quinazoline (16 a), 19 a-d, (R)-tert-butyl-3-(6-fluoroquinoxalin-2-yloxy) pyrrolidine-1-carboxylate (29), and 35 (IC50 PDE10A 11-65 nM) showed the highest inhibitory potential. Further, fluoroethoxy substitution at position 7 of the quinazoline ring improved metabolic stability over that of the lead structure PQ-10. Fluor your health: Phosphodiesterase 10 A (PDE10A) has emerged as an attractive target for the development of 18F-labelled brain imaging agents for positron emission tomography. A series of fluorinated dialkoxybiaryl compounds were synthesized and evaluated as PDE10A inhibitors, assisted by QSAR docking studies. The 7-fluoromethoxy derivative appears to be a promising candidate for further development.

CHEMICAL PROCESS

-

Page/Page column 47-48, (2008/12/05)

The present invention relates to chemical processes for the manufacture of certain quinazoline derivatives, or pharmaceutically acceptable salts thereof. The invention also relates to processes for the manufacture of certain intermediates useful in the manufacture of the quinazoline derivatives and to processes for the manufacture of the quinazoline derivatives utilising said intermediates. In particular, the present invention relates to chemical processes and intermediates useful in the manufacture of the compound 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazoline.

Potent and Selective Inhibitors of Platelet-Derived Growth Factor Receptor Phosphorylation. 3. Replacement of Quinazoline Moiety and Improvement of Metabolic Polymorphism of 4-[4-(N-Substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline Derivatives

Matsuno, Kenji,Ushiki, Junko,Seishi, Takashi,Ichimura, Michio,Giese, Neill A.,Yu, Jin-Chen,Takahashi, Shusuke,Oda, Shoji,Nomoto, Yuji

, p. 4910 - 4925 (2007/10/03)

We have previously reported that a series of 4-[4-(N-substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline derivatives were potent and selective inhibitors of platelet-derived growth factor receptor (PDGFR) phosphorylation and demonstrated several biological effects such as suppression of neointima formation following balloon injury in rat carotid artery by oral administration. Here, we investigated structure-activity relationships of the 6,7-dimethoxyquinazolinyl moiety. In regard to 6,7-dimethoxy groups, ethoxy analogues showed potent activity (IC50 of 16b is 0.04 μM; IC50 of 17a is 0.01 μM) and further extension of the alkyl group reduced activity. Interestingly, methoxyethoxy (IC50 of 16j is 0.02μM; IC50 of 17h is 0.01 μM) and ethoxyethoxy (IC50 of 17j is 0.02 μM) analogues showed the most potent activity, suggesting that the inserted oxygen atom significantly interacts with β-PDGFR. Among tricyclic quinazoline derivatives, the 2-oxoimidazo[4,5-e]quinazoline derivative 21a showed potent activity (IC 50 = 0.10 μM). Regarding replacements of quinazoline by other heterocyclic rings, pyrazolo[3,4-d]pyrimidine (39a, IC50 = 0.17 μM) and quinoline (IC50 of 40a is 0.18 μM; IC50 of 40b is 0.09 μM) derivatives showed potent activity. Isoquinoline and some pyridopyrimidine derivatives were completely inactive; therefore, 1-aza has an important role. Also 7-aza and 8-aza substitution on the parent quinazoline ring has a detrimental effect on the interaction with β-PDGFR. We also demonstrated that the substituents on the quinazoline ring possess major consequences for metabolic polymorphism. Although there existed extensive metabolizers and poor metabolizers in Sprague-Dawley rats administrated 6,7-dimethoxyquinazoline derivatives (1b and 1c), 6-(2-methoxy)ethoxy-7-methoxyquinazoline analogue 16k showed no metabolic polymorphism.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 205259-41-2