Welcome to LookChem.com Sign In|Join Free

CAS

  • or

20653-11-6

Post Buying Request

20653-11-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

20653-11-6 Usage

Chemical Properties

Light yellow solid

Check Digit Verification of cas no

The CAS Registry Mumber 20653-11-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,0,6,5 and 3 respectively; the second part has 2 digits, 1 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 20653-11:
(7*2)+(6*0)+(5*6)+(4*5)+(3*3)+(2*1)+(1*1)=76
76 % 10 = 6
So 20653-11-6 is a valid CAS Registry Number.

20653-11-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-nitrophenoxy)-4-[2-[4-(4-nitrophenoxy)phenyl]propan-2-yl]benzene

1.2 Other means of identification

Product number -
Other names F0266-0258

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:20653-11-6 SDS

20653-11-6Relevant articles and documents

Bis(azobenzene) diamines and photomechanical polymers made therefrom

-

Page/Page column 18, (2017/05/31)

Bis(azo-benzene) diamine monomers and a method of synthesizing the monomers are provided. The bis(azo-benzene) diamine monomers, in combination with amine reactive monomers, form polymers, such as polyimides and copolyimides, having photomechanical and thermomechanical properties.

Multivalent photo-crosslinkable coumarin-containing polybenzoxazines exhibiting enhanced thermal and hydrophobic surface properties

Lin, Ruey-Chorng,Mohamed, Mohamed Gamal,Hsu, Kuo-Chih,Wu, Jia-Yu,Jheng, Yu-Ru,Kuo, Shiao-Wei

, p. 10683 - 10696 (2016/02/09)

In this study, mono-, bi-, and trivalent coumarin-containing benzoxazine monomers (mono-, di-, and tri-coumarin BZ) were synthesized in high yield and purity by facile Mannich reactions of 4-methyl-7-hydroxycoumarin and paraformaldehyde with aniline, bisphenol A-NH2, and 1,3,5-tri(4-aminobenzene), respectively, in 1,4-dioxane. 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and high resolution mass spectroscopy support the chemical structures of these three benzoxazine monomers. Differential scanning calorimetry (DSC) and FTIR spectroscopy were used to investigate the curing polymerization behavior and photodimerization ([2π + 2π] cycloaddition) of the coumarin units of mono-, di-, and tri-coumarin BZ to form poly(mono-coumarin BZ), poly(di-coumarin BZ), and poly(tri-coumarin BZ), respectively. DSC measurement revealed that the thermal polymerization temperature of coumarin-containing benzoxazine monomers was lower than that of the model compound 3-phenyl-3,4-dihydro-2H-benzooxazine (263°C) which was attributed to the catalytic effect of the coumarin moiety and a strong electron withdrawing electron conjugated CC bond in the coumarin unit. In addition, the glass transition and thermal decomposition temperatures of poly(tri-coumarin BZ) (Tg = 240°C; Td5 = 370°C) were higher than poly(di-coumarin BZ) and poly(mono-coumarin BZ), consistent with the former's higher crosslinking density. In addition, the water contact angles of poly(tri-coumarin BZ) polymers prepared with and without photo-dimerization prior to thermal curing (112 and 110°, respectively) were higher than the corresponding poly(mono-coumarin BZ) and poly(di-coumarin BZ), presumably because of greater degrees of intramolecular hydrogen bonding between the CO units of the coumarin moieties and the phenolic OH units of the benzoxazine rings, resulting in lower surface free energies. Thus, the presence of multivalent photo-crosslinkable coumarin units enhanced the thermal and hydrophobic surface properties of these polybenzoxazines.

Thermo-mechanical and surface properties of POSS reinforced structurally different diamine cured epoxy nanocomposites

Sethuraman,Prabunathan,Alagar

, p. 45433 - 45441 (2015/01/09)

In the present study three structurally different diamines namely bisphenol-A based ether diamine, octane diol based ether diamine, and capron based diamine were synthesized and characterized using FT-IR, 1H-NMR and 13C-NMR spectra. These diamines were used to cure DGEBA epoxy resin and were reinforced with NH2-POSS in different weight percentages (1%, 3% and 5% wt) to obtain epoxy matrices and composites. Data obtained from thermo-mechanical, dielectric and surface studies were compared with those of neat epoxy matrix cured with diamino diphenyl methane (DDM). The surface morphology was ascertained from the XRD and SEM analysis and the presence of POSS in the composites was ascertained from the TEM images. The capron based diamine cured epoxy matrix shows better improvement in tensile strength and impact strength of 39.8% and 137.0% respectively than those of neat epoxy cured with diamino diphenyl methane (DDM). The value of contact angle (91.3°) of the capron based diamine cured epoxy composites infers that the epoxy matrix becomes hydrophobic nature. Data obtained from different studies suggest that the capron diamine cured epoxy matrix can be used in the form of a coating, encapsulant, or a sealant for different industrial and engineering applications for better performance and improved longevity. This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 20653-11-6