Welcome to LookChem.com Sign In|Join Free

CAS

  • or

207455-46-7

Post Buying Request

207455-46-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

207455-46-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 207455-46-7 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,0,7,4,5 and 5 respectively; the second part has 2 digits, 4 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 207455-46:
(8*2)+(7*0)+(6*7)+(5*4)+(4*5)+(3*5)+(2*4)+(1*6)=127
127 % 10 = 7
So 207455-46-7 is a valid CAS Registry Number.

207455-46-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-[4-(methoxy)carbonylphenyl] propanoic acid

1.2 Other means of identification

Product number -
Other names 4-(1-Carboxy-ethyl)-benzoic acid methyl ester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:207455-46-7 SDS

207455-46-7Relevant articles and documents

Visible-light photoredox-catalyzed selective carboxylation of C(sp3)?F bonds with CO2

Bo, Zhi-Yu,Chen, Lin,Gao, Tian-Yu,Jing, Ke,Lan, Yu,Liu, Shi-Han,Luo, Shu-Ping,Yan, Si-Shun,Yu, Bo,Yu, Da-Gang

supporting information, p. 3099 - 3113 (2021/11/16)

It is highly attractive and challenging to utilize carbon dioxide (CO2), because of its inertness, as a nontoxic and sustainable C1 source in the synthesis of valuable compounds. Here, we report a novel selective carboxylation of C(sp3)?F bonds with CO2 via visible-light photoredox catalysis. A variety of mono-, di-, and trifluoroalkylarenes as well as α,α-difluorocarboxylic esters and amides undergo such reactions to give important aryl acetic acids and α-fluorocarboxylic acids, including several drugs and analogs, under mild conditions. Notably, mechanistic studies and DFT calculations demonstrate the dual role of CO2 as an electron carrier and electrophile during this transformation. The fluorinated substrates would undergo single-electron reduction by electron-rich CO2 radical anions, which are generated in situ from CO2 via sequential hydride-transfer reduction and hydrogen-atom-transfer processes. We anticipate our finding to be a starting point for more challenging CO2 utilization with inert substrates, including lignin and other biomass.

Construction of a visible light-driven hydrocarboxylation cycle of alkenes by the combined use of Rh(i) and photoredox catalysts

Murata, Kei,Numasawa, Nobutsugu,Shimomaki, Katsuya,Takaya, Jun,Iwasawa, Nobuharu

supporting information, p. 3098 - 3101 (2017/03/17)

A visible light driven catalytic cycle for hydrocarboxylation of alkenes with CO2 was established using a combination of a Rh(i) complex as a carboxylation catalyst and [Ru(bpy)3]2+ (bpy = 2,2′- bipyridyl) as a photoredox catalyst. Two key steps, the generation of Rh(i) hydride species and nucleophilic addition of π-benzyl Rh(i) species to CO2, were found to be mediated by light.

Rhodium-Catalyzed Hydrocarboxylation of Olefins with Carbon Dioxide

Kawashima, Shingo,Aikawa, Kohsuke,Mikami, Koichi

, p. 3166 - 3170 (2016/07/19)

The catalytic hydrocarboxylation of styrenes derivatives and α,β-unsaturated carbonyl compounds with CO2(101.3 kPa) in the presence of an air-stable rhodium catalyst was explored. The combination of [RhCl(cod)]2(cod = cyclooctadiene) as a catalyst and diethylzinc as a hydride source allowed for effective hydrocarboxylation and provided the corresponding α-aryl carboxylic acids in moderate to excellent yields. In this catalytic process with carbon dioxide, intervention of the RhI–H species, which could be generated from the RhIcatalyst and diethylzinc, was clarified. Significantly, the catalytic asymmetric hydrocarboxylation of α,β-unsaturated esters with carbon dioxide was also performed by employing a cationic rhodium complex possessing (S)-(–)-4,4′-bi-1,3-benzodioxole-5,5′-diylbis(diphenylphosphine) [(S)-SEGPHOS] as a chiral diphosphine ligand. A plausible model for asymmetric induction was proposed by determination of the absolute configuration of the product.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 207455-46-7