Welcome to LookChem.com Sign In|Join Free

CAS

  • or
3-hydroxy-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

21488-68-6

Post Buying Request

21488-68-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

21488-68-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 21488-68-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,1,4,8 and 8 respectively; the second part has 2 digits, 6 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 21488-68:
(7*2)+(6*1)+(5*4)+(4*8)+(3*8)+(2*6)+(1*8)=116
116 % 10 = 6
So 21488-68-6 is a valid CAS Registry Number.

21488-68-6Relevant articles and documents

Exploring the substrate specificity of Cytochrome P450cin

Stok, Jeanette E.,Giang, Peter D.,Wong, Siew Hoon,De Voss, James J.

, (2019/08/02)

Cytochromes P450 are enzymes that catalyse the oxidation of a wide variety of compounds that range from small volatile compounds, such as monoterpenes to larger compounds like steroids. These enzymes can be modified to selectively oxidise substrates of interest, thereby making them attractive for applications in the biotechnology industry. In this study, we screened a small library of terpenes and terpenoid compounds against P450cin and two P450cin mutants, N242A and N242T, that have previously been shown to affect selectivity. Initial screening indicated that P450cin could catalyse the oxidation of most of the monoterpenes tested; however, sesquiterpenes were not substrates for this enzyme or the N242A mutant. Additionally, both P450cin mutants were found to be able to oxidise other bicyclic monoterpenes. For example, the oxidation of (R)- and (S)-camphor by N242T favoured the production of 5-endo-hydroxycamphor (65–77% of the total products, dependent on the enantiomer), which was similar to that previously observed for (R)-camphor with N242A (73%). Selectivity was also observed for both (R)- and (S)-limonene where N242A predominantly produced the cis-limonene 1,2-epoxide (80% of the products following (R)-limonene oxidation) as compared to P450cin (23% of the total products with (R)-limonene). Of the three enzymes screened, only P450cin was observed to catalyse the oxidation of the aromatic terpene p-cymene. All six possible hydroxylation products were generated from an in vivo expression system catalysing the oxidation of p-cymene and were assigned based on 1H NMR and GC-MS fragmentation patterns. Overall, these results have provided the foundation for pursuing new P450cin mutants that can selectively oxidise various monoterpenes for biocatalytic applications.

In vivo and in vitro hydroxylation of cineole and camphor by cytochromes P450CYP101A1, CYP101B1 and N242A CYP176A1

Stok, Jeanette E.,Hall, Emma A.,Stone, Isobella S.J.,Noble, Margaret C.,Wong, Siew Hoon,Bell, Stephen G.,De Voss, James J.

, p. 52 - 64 (2016/04/06)

Cytochromes P450 (P450s) are valuable enzymes that can generate a range of useful compounds via biocatalytic oxidations that complement traditional synthetic chemistry. In this study three bacterial P450s, P450cam (CYP101A1), CYP101B1 and the m

General and efficient α-oxygenation of carbonyl compounds by TEMPO induced by single-electron-transfer oxidation of their enolates

Dinca, Emanuela,Hartmann, Philip,Smrcek, Jakub,Dix, Ina,Jones, Peter G.,Jahn, Ullrich

supporting information, p. 4461 - 4482 (2012/10/30)

A generally applicable method for the synthesis of protected α-oxygenated carbonyl compounds is reported. It is based on the single-electron-transfer oxidation of easily generated enolates to the corresponding α-carbonyl radicals. Coupling with the stable free radical TEMPO provides α-(piperidinyloxy) ketones, esters, amides, acids or nitriles in moderate-to-excellent yields. Enolate aggregates influence the outcome of the oxygenation reactions significantly. Competitive reactions have been analyzed and conditions for their minimization are presented. Chemoselective reduction of the products led to either N-O bond cleavage to α-hydroxy carbonyl compounds or reduction of the carbonyl functionality tomonoprotected 1,2-diols or O-protected amino alcohols. The oxygenation of enolates proves to be the most general and effective methodology for the synthesis of O-protected α-oxy carbonyl compounds and nitriles A. The scope and limitations of the electron-transfer-induced radical coupling reaction with TEMPO are presented. The reaction pathways are outlined. Methods for the deprotection to α-hydroxy carbonyl compounds B are provided and discussed. Copyright

Reduction of various ketones by red algae

Utsukihara, Takamitsu,Misumi, Osami,Kato, Nakahide,Kuroiwa, Tsuneyoshi,Horiuchi, C. Akira

, p. 1179 - 1185 (2007/10/03)

The reduction of acetophenone derivatives, (+)- and (-)-camphorquinones and steroidal ketones using red algae (Cyanidioschyzon merolae 10D and Cyanidium caldarium) was investigated. It was found that fluoro, chloro and bromo acetophenone derivatives 1a-i were reduced with good enantioselectivity. On the contrary, reduction of methyl and methoxy acetophenone 1j-o showed low enantioselectivity. The reduction followed Prelog's rule, giving the (S)-alcohols in all cases. Moreover, (+)- camphorquinone 5a was reduced to give (-)-3S- exo-hydroxycamphor 5d as the major product with high stereoselectivity in high yield. In addition, it was found that reduction of 5α-androstane-3,17-dione 8a gave the 3α-OH isomer (3α-OH/3β-OH = 76/24) with high stereoselectivity. Overall it was found that C. merolae and C. caldarium were able to reduce various substrates.

A novel synthesis of α-hydroxy- and α,α′- dihydroxyketone from α-iodo and α,α′-diiodo ketone using photoirradiation

Horiuchi, C. Akira,Takeda, Akinori,Chai, Wen,Ohwada, Kishoh,Ji, Shun-Jun,Takahashi, T. Tomoyoshi

, p. 9307 - 9311 (2007/10/03)

A novel reaction of α-iodo ketone (α-iodocycloalkanone, α-iodo-β-alkoxy ester, and α-iodoacyclicketone) with irradiation under a high-pressure mercury lamp gave the corresponding α-hydroxyketone in good yields. In the case of α,α′- diiodo ketone, α,α′-dihydroxyketone which little has been reported until now was obtained. This reaction affords a new, clean and convenient synthetic method for α-hydroxy- and α,α′- dihydroxyketone.

Biotransformation of (+)- and (-)-camphorquinones by plant cultured cells

Chai, Wen,Hamada, Hiroki,Suhara, Jumpei,Akira Horiuchi

, p. 669 - 673 (2007/10/03)

Biotransformation of (+)- and (-)-camphorquinones with suspension plant cultured cells of Nicotiana tabacum and Catharanthus roseus was investigated. It was found that the plant cultured cells of N. tabacum and C. roseus reduce stereoselectively the carbonyl group of (+)- and (-)-camphorquinones to the corresponding α-keto alcohols.

Diastereoselective Hydroxylation of Titanium Enolates with tert-Butylhydroperoxide

Schulz M.,Kluge, R.,Schuessler, M.,Hoffmann, G.

, p. 3175 - 3180 (2007/10/02)

The oxidation of titanium enolates with tert-butylhydroperoxide has been investigated and the main reaction products, the corresponding α-hydroxyketones 7a-f, isolated.The highest diastereoselectivities (>95percent de) were obtained, when titanium enolates of camphor 2d-6d were employed.For comparison, the oxidation of the enolates with dimethyldioxirane is discussed.

Dimethyldioxirane Oxidation of Titanium Enolates: Diastereoselective α-Hydroxylations

Adam, Waldemar,Mueller, Michael,Prechtl, Frank

, p. 2358 - 2364 (2007/10/02)

The oxidation of titanium enolates, derived from a transmetalation of the corresponding lithium enolates with (i-PrO)3TiCl, (Et2N)3TiCl, or Cp2TiCl2, by dimethyldioxirane has been investigated.Furthermore, the diastereoselective hydroxylation of the chiral metal enolates, e.g., derived from camphor (1f), menthone (1g), flavanone (1h), and 2-benzylcyclopentanone (1i), by dimethyldioxirane has been examined.The diastereoselectivity of the oxygen transfer strongly depends on the metal partner coordinated to the enolate.The titanium enolates 4 resulted in much higher diastereoselectivities (up to 96percent de) than the corresponding sodium enolates 5 and at least as high if not higher than the silyl enol ethers 6.Moreover, the aldol reaction of ester-derived sodium enolates with acetone, the unavoidable medium for dimethyldioxirane, could be totally suppressed by the use of the chlorotitanocene enolates 4.Thus, the oxidation of chiral titanium enolates by dimethyldioxirane represents a general, convenient, effective, and chemo- and diastereoselective synthesis of α-hydroxy carbonyl compounds.

Highly Efficient Hydroxylation of Carbonyl Compounds with Dimethyldioxirane

Adam, Waldemar,Prechtl, Frank

, p. 2369 - 2372 (2007/10/02)

The enolates and/or enols of ketones, esters, β-diketones, β-oxo esters, and β-oxolactones were transformed by dimethyldioxirane (isolated in acetone solution or generated in situ) into their α-hydroxy compounds in good to excellent yields.The direct hydroxylation of the enols was significantly enhanced by the use of fluoride ion.For the enolate of camphor the exo/endo diastereoselectivity depended significantly on the metal ligand; the highest exo/endo ratio (93:7) was observed for the enol trimethylsilyl ether of camphor.Key Words: Dimethyldioxirane / Enolates / Hydroxylation / α-Hydroxy carbonyl compounds / Enol silyl ethers

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 21488-68-6