Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2655-27-8

Post Buying Request

2655-27-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2655-27-8 Usage

General Description

N-N-Pentylaniline, also known as N-butylphenylamine, is a chemical compound with the molecular formula C12H17N. It is classified as an aromatic amine and is used in the production of dyes, pharmaceuticals, and chemicals. N-N-Pentylaniline is a colorless to pale yellow liquid with a faint amine odor and is insoluble in water but soluble in most organic solvents. It is primarily used as an intermediate in the synthesis of various organic compounds, including antioxidants, UV stabilizers, and rubber chemicals. N-N-Pentylaniline is considered to be a hazardous substance, and proper precautions should be taken when handling or working with it.

Check Digit Verification of cas no

The CAS Registry Mumber 2655-27-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,6,5 and 5 respectively; the second part has 2 digits, 2 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 2655-27:
(6*2)+(5*6)+(4*5)+(3*5)+(2*2)+(1*7)=88
88 % 10 = 8
So 2655-27-8 is a valid CAS Registry Number.
InChI:InChI=1/C11H17N/c1-2-3-7-10-12-11-8-5-4-6-9-11/h4-6,8-9,12H,2-3,7,10H2,1H3

2655-27-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name N-Pentylaniline

1.2 Other means of identification

Product number -
Other names N-N-PENTYLANILINE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2655-27-8 SDS

2655-27-8Relevant articles and documents

A highly efficient Co-based catalyst fabricated by coordination-assisted impregnation strategy towards tandem catalytic functionalization of nitroarenes with various alcohols

Li, Guangming,Li, Jingfang,Li, Weizuo,Li, Xuewei,Li, Zhibin,Mao, Guijie,She, Wei,Wang, Jing

, p. 462 - 474 (2021/11/11)

A well-defined hexamethylenetetramine (abbreviated as HMTA) based two-dimensional (2D) MOFs metalloligand (termed Zn-HMTA), with free uncoordinated tertiary amine groups, has been synthesized via solution diffusion method for the first time. The crystal structure of 2D Zn-HMTA metalloligand was determined by the single crystal X-ray diffraction (SCXRD). The SCXRD and X-ray photoelectron spectroscopy (XPS) analyses have revealed that the 2D Zn-HMTA metalloligand is rich in- free tertiary amine groups, which are of strong coordination ability to transition metal ions (e.g. Ni2+, Co2+, Zn2+, Cu2+). As a result, a 2D bimetallic Co@Zn-HMTA MOFs was synthesized via coordination-assisted impregnation (CAI) strategy attributed to the unique feature of strong coordinated ability of free tertiary amine groups. Furthermore, a series of self-supported Co-ZnO-CN nanocatalysts were afforded upon the as-synthesized Co@Zn-HMTA MOFs served as a self-sacrificial template for pyrolysis at different temperatures. The optimized catalyst (termed as Co-ZnO@CN-CAI) demonstrated the excellent catalytic performance for hydrogenation-alkylation tandem reaction in comparison with the classic ZnO@CN composite (derived from Zn-HMTA MOFs) supported metallic Co catalyst (Co-ZnO@CN-IWI) prepared by incipient wetness impregnation method. Moreover, the kinetic study was also performed to confirm that the alkylation is the rate-determining step in the hydrogenation-alkylation tandem reaction. The origin of enhanced catalytic performance of Co-ZnO@CN-CAI and the role of Co@Zn-HMTA MOFs precursor have been explored by way of various characterizations, e.g. HADDF-STEM-EDS, SEM-EDS, 13C MAS NMR, XRD, Raman and XPS, etc. It is anticipated that the prepared low-cost and easily prepared 2D Zn-HMTA metalloligand will become a general template for synthesis of highly self-supported catalysts with coordination-assisted impregnation strategy (CAI) for various catalytic reactions.

C–N Cross-coupling Reactions of Amines with Aryl Halides Using Amide-Based Pincer Nickel(II) Catalyst

Albkuri, Yahya M.,RanguMagar, Ambar B.,Brandt, Andrew,Wayland, Hunter A.,Chhetri, Bijay P.,Parnell, Charlette M.,Szwedo, Peter,Parameswaran-Thankam, Anil,Ghosh, Anindya

, p. 1669 - 1678 (2019/12/27)

Abstract: An approach to C–N cross-coupling reactions of aryl halides with amines in the presence of an amide-based pincer nickel(II) catalyst (2) is described. For 3?h reactions at 110?°C with 0.2?mol% catalyst, aryl bromides gave higher turnover numbers (TON) than the corresponding chlorides or iodides. Both primary and secondary amines could be used with the former giving higher TON. However, sterically hindered amines showed lower TON. In elucidating the mechanism of this nickel complex-catalyzed C–N cross coupling reaction it was found that the rate of reaction was unchanged in the presence of radical quenchers and a plausible Ni(I)–Ni(III) pathway is proposed. Graphic Abstract: [Figure not available: see fulltext.]Nickel pincer catalyst proved to be excellent catalyst for the C-N cross-coupling reaction with the high turnover number (TON) for 1° and 2° amines and different nonactivated aryl halides under optimum conditions.

Bidentate geometry-constrained iminopyridyl nickel-catalyzed synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensation

Jiang, Yong,Hu, Miao,Sun, Nan,Hu, Baoxiang,Shen, Zhenlu,Hu, Xinquan,Jin, Liqun

supporting information, (2020/11/27)

The efficient Ni-catalyzed N-alkylation of various anilines with alcohols via borrowing hydrogen is reported using a bidentate geometry-constrained iminopyridyl nickel complex as the catalyst. Substituted benzylic alcohols and short/long chain aliphatic alcohols could be applied as the alkylation sources to couple with aromatic and heteroaromatic amines to give a diverse set of N-alkylation outcomes in moderate to excellent yields. The nickel catalytic system was also suitable for aliphatic amines, selectively delivering the corresponding imines via an acceptorless dehydrogenative condensation strategy.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2655-27-8