Welcome to LookChem.com Sign In|Join Free

CAS

  • or

27006-76-4

Post Buying Request

27006-76-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

27006-76-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 27006-76-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,7,0,0 and 6 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 27006-76:
(7*2)+(6*7)+(5*0)+(4*0)+(3*6)+(2*7)+(1*6)=94
94 % 10 = 4
So 27006-76-4 is a valid CAS Registry Number.
InChI:InChI=1/C6H7ClN2O/c1-4-5(3-10)6(7)9(2)8-4/h3H,1-2H3

27006-76-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H50475)  5-Chloro-1,3-dimethyl-1H-pyrazole-4-carboxaldehyde, 95%   

  • 27006-76-4

  • 1g

  • 373.0CNY

  • Detail
  • Alfa Aesar

  • (H50475)  5-Chloro-1,3-dimethyl-1H-pyrazole-4-carboxaldehyde, 95%   

  • 27006-76-4

  • 5g

  • 4275.0CNY

  • Detail

27006-76-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 5-chloro-1,3-dimethylpyrazole-4-carbaldehyde

1.2 Other means of identification

Product number -
Other names 5-Chloro-1,3-dimethyl pyrazole-4-aldehyde

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:27006-76-4 SDS

27006-76-4Relevant articles and documents

Synthesis of novel EP4 antagonists and their use in cancer and inflammation

-

Paragraph 0302; 0307-0312, (2021/09/08)

The present invention relates to a compound capable of effectively antagonizing EP4, which is a compound represented by formula I, or a tautomer, a stereoisomer, a hydrate, a solvate, a pharmaceutically-acceptable salt or a prodrug of the compound represented by formula I. R1 is selected from -CH3, -CHF2, and -CF3; R2 is selected from C2-C6 alkyl, C3-C6 cycloalkyl, halogenated C2-C6 alkyl, and halogenated C3-C6 cycloalkyl; R3 is selected from hydrogen, halogen, C1-C2 alkyl, and fluorinated C1-C2 alkyl; R4 is selected from hydrogen, halogen, C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkyl, and halogenated C1-C6 alkoxy.

Expedient discovery for novel antifungal leads targeting succinate dehydrogenase: Pyrazole-4-formylhydrazide derivatives bearing a diphenyl ether fragment

Chen, Min,Li, Guohua,Lu, Aimin,Qiu, Lingling,Wang, An,Wang, Xiaobin,Xue, Wei,Yang, Chunlong

, p. 14426 - 14437 (2020/12/22)

The pyrazole-4-carboxamide scaffold containing a flexible amide chain has emerged as the molecular skeleton of highly efficient agricultural fungicides targeting succinate dehydrogenase (SDH). Based on the above vital structural features of succinate dehydrogenase inhibitors (SDHI), three types of novel pyrazole-4-formylhydrazine derivatives bearing a diphenyl ether moiety were rationally conceived under the guidance of a virtual docking comparison between bioactive molecules and SDH. Consistent with the virtual verification results of a molecular docking comparison, the in vitro antifungal bioassays indicated that the skeleton structure of title compounds should be optimized as an N′-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide scaffold. Strikingly, N′-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide derivatives 11o against Rhizoctonia solani, 11m against Fusarium graminearum, and 11g against Botrytis cinerea exhibited excellent antifungal effects, with corresponding EC50 values of 0.14, 0.27, and 0.52 μg/mL, which were obviously better than carbendazim against R. solani (0.34 μg/mL) and F. graminearum (0.57 μg/mL) as well as penthiopyrad against B. cinerea (0.83 μg/mL). The relative studies on an in vivo bioassay against R. solani, bioactive evaluation against SDH, and molecular docking were further explored to ascertain the practical value of compound 11o as a potential fungicide targeting SDH. The present work provided a non-negligible complement for the structural optimization of antifungal leads targeting SDH.

Design, synthesis, and biological evaluation of novel thiazolyl substituted bis-pyrazole oxime derivatives with potent antitumor activities by selectively inducing apoptosis and ros in cancer cells

Xiong, Biao,Chen, Shi,Zhu, Peng,Huang, Meiling,Gao, Weijie,Zhu, Rui,Qian, Jianqiang,Peng, Yanfu,Zhang, Yanan,Dai, Hong,Ling, Yong

, p. 743 - 754 (2019/11/02)

Background: A large number of pyrazole derivatives have different biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic and antiepileptic activity. Among them, pyrazole oximes have attracted much attention due to their potential pharmacological activities, particularly anticancer activities. Objective: Our goal is to synthesize novel thiazolyl substituted bis-pyrazole oxime derivatives with potent antitumor activities by selectively inducing apoptosis and Reactive Oxygen Species (ROS) accumulation in cancer cells. Methods: Eighteen bis-pyrazole oximes were synthesized by conjugating thiazolyl substituted pyrazoles with pyrazoxime. The target compounds were characterized by1HNMR,13C NMR, and HRMS, and screened for their antiproliferative activity against four cancer cells in MTT assay. The most potent compound was examined for its inhibitory effect and ROS accumulation in both cancer cells HCT116 and normal intestinal epithelial cells CCD841. Finally, the most potent compound was further evaluated for its apoptotic induction by flow cytometry analysis and immunoblot analysis of apoptosis-related proteins and DNA damage proteins. Results: Most compounds displayed potent antiproliferative activity against four cancer cell lines in vitro, displaying potencies superior to 5-FU. In particular, the most potent compound 13l selectively inhibited proliferation of colorectal cancer HCT116 cells but not normal colon CCD841 cells. Furthermore, compound 13l also selectively promoted intracellular ROS accumulation in HCT116 which was involved in 13l inhibition of cancer cell proliferation and induction of cell apoptosis. Finally, compound 13l also dose-dependently induced cancer cell apoptosis by regulating apoptotic and DNA damage related proteins expressions. Conclusion: Our synthetic bis-pyrazole oxime derivatives possess potent antitumor activities by selectively inducing apoptosis and ROS accumulation in cancer cells, which may hold great promise as therapeutic agents for the treatment of human cancers.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 27006-76-4