2789-89-1Relevant articles and documents
Synthesis and thermal properties of an acetylenic monomer containing boron and silicon
Cheng, Shengli,Zong, Lishuai,Yuan, Kuanyu,Han, Jianhua,Jian, Xigao,Wang, Jinyan
, p. 88403 - 88410 (2016)
To improve the thermo-oxidative stability of acetylenic aromatic compounds, 1,2-bis(4-trimethylsilylethynylphenyl)-carborane (CBTMS) was designed, synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR and mass spectrometry. The analysis of the DSC results showed that the acetylenic monomer had a melting point at 195.5 °C. The cross-linking process of CBTMS included a Diels-Alder cycloaddition reaction confirmed by FT-IR spectroscopy. Nonisothermal DSC studies showed CBTMS has an activation energy similar to that of the phenylethynyl-terminated compound. The thermoset and ceramic derived from the acetylenic monomer exhibited extremely thermo-oxidatively stable properties studied using thermogravimetric analysis (TGA). The thermoset showed a weight gain in air at elevated temperature and char yield of 98.8% at 1000 °C in air, and the ceramic residue had almost no weight loss up to 1000 °C in air. We demonstrated that trimethylsilylethynyl could be used as a crosslinking group for thermosetting polymers.
Sky-blue thermally activated delayed fluorescence material employing a diphenylethyne acceptor for organic light-emitting diodes
He, Zuozheng,Cai, Xinyi,Wang, Zhiheng,Li, Yunchuan,Xu, Zhida,Liu, Kunkun,Chen, Dongcheng,Su, Shi-Jian
, p. 36 - 42 (2017)
The strong electronegativity of sp-hybridized carbons, contributed by their large s character (50%), inspired the development of diphenylethyne as an electron acceptor to construct a sky-blue thermally activated delayed fluorescence material, 1,2-bis(4-(10H-phenoxazin-10-yl)phenyl)ethyne (DPE-DPXZ), using 10H-phenoxazine (PXZ) as an electron donor fragment. A sky-blue organic light-emitting diode employing DPE-DPXZ as the emitter demonstrated an external quantum efficiency exceeding 10%. Furthermore, another alkyne derivative, 1,2-bis(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)ethyne (DPE-DDMAc), in combination with 9,9-dimethyl-9,10-dihydroacridine (DMAc) as the donor was also studied to explore the singlet-triplet splitting energy governed by donor-acceptor alternation.
Mechanochemical Synthesis of Diarylethynes from Aryl Iodides and CaC 2
Bolm, Carsten,Van Bonn, Pit
supporting information, (2022/02/25)
A mechanochemical synthesis of diarylethynes from aryl iodides and calcium carbide as acetylene source is reported. The reaction is catalyzed by a palladium catalyst in the presence of copper salt, base, and ethanol as liquid assisting grinding (LAG) additive. Various aryl and heteroaryl iodides have been converted in up to excellent yields.
Iodonium Cation-Pool Electrolysis for the Three-Component Synthesis of 1,3-Oxazoles
Sattler, Lars E.,Hilt, Gerhard
supporting information, p. 605 - 608 (2020/12/07)
The synthesis of 1,3-oxazoles from symmetrical and unsymmetrical alkynes was realized by an iodonium cation-pool electrolysis of I2 in acetonitrile with a well-defined water content. Mechanistic investigations suggest that the alkyne reacts with the acetonitrile-stabilized I+ ions, followed by a Ritter-type reaction of the solvent to a nitrilium ion, which is then attacked by water. The ring closure to the 1,3-oxazoles released molecular iodine, which was visible by the naked eye. Also, some unsymmetrical internal alkynes were tested and a regioselective formation of a single isomer was determined by two-dimensional NMR experiments.
Rh(iii)-Catalyzed three-component cascade annulation to produce theN-oxopropyl chain of isoquinolone derivatives
He, Yuan,Liao, Xian-Zhang,Dong, Lin,Chen, Fen-Er
supporting information, p. 561 - 567 (2021/02/06)
Developing powerful methods to introduce versatile functional groups at theN-substituents of isoquinolone scaffolds is still a great challenge. Herein, we report a novel three-component cascade annulation reaction to efficiently construct theN-oxopropyl chain of isoquinolone derivativesviarhodium(iii)-catalyzed C-H activation/cyclization/nucleophilic attack, with oxazoles used both as the directing group and potential functionalized reagents.
Palladium-Catalyzed Cascade Dearomative Spirocyclization and C?H Annulation of Aromatic Halides with Alkynes
Liao, Xingrong,Zhou, Fulin,Bin, Zhengyang,Yang, Yudong,You, Jingsong
supporting information, p. 5203 - 5207 (2021/07/19)
Described herein is a palladium-catalyzed intermolecular dearomative annulation of aryl halides with alkynes, which provides a rapid approach to a class of structurally unique spiroembedded polycyclic aromatic compounds. The cascade process is accomplished by a sequential alkyne migratory insertion, Heck-type dearomatization, and C-H bond annulation. Further optoelectronic study indicated this fused spirocyclic scaffold could be a potential host material for OLEDs, as exemplified by a fabricated red PhOLED device with a maximum external quantum efficiency of 23.0%.
Selective Synthesis of Non-Aromatic Five-Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/N-Chlorophthalimide System
Yu, Wentao,Zhu, Baiyao,Shi, Fuxing,Zhou, Peiqi,Wu, Wanqing,Jiang, Huanfeng
supporting information, p. 1313 - 1322 (2020/12/01)
A multicomponent strategy to achieve two different regioselectivities from alkynes, isothiocyanates and H2O with a proton acid/N-chlorophthalimide (NCPI) system is described to selectively obtain non-aromatic five-membered sulfur heterocycles (1,3-oxathiol-2-imines/thiazol-2(3H)-one derivatives) through multiple bond formations. The process features readily available starting materials, mild reaction conditions, broad substrate scope, good functional-group tolerance, high regio- and chemo- selectivities, gram-scale synthesis and late-stage modifications. Mechanistic studies support the proposal that the transformation process includes a combination of H2O and isothiocyanate, free-radical formation, carbonation and intramolecular cyclization to give the products. Furthermore, the 1,3-oxathiol-2-imine derivatives possess unique fluorescence characteristics and can be used as Pd2+ sensors with a “turn-off” response, demonstrating potential applications in environmental and biological fields.
Rhodium-Catalyzed Regioselective Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes Using Formic Acid
Fan, Chao,Hou, Jing,Chen, Yu-Jia,Ding, Kui-Ling,Zhou, Qi-Lin
supporting information, p. 2074 - 2077 (2021/04/05)
A rhodium-catalyzed hydroformylation of alkynes with formic acid was developed. The method provides α,β-unsaturated aldehydes in high yield and E-selectivity without the need to handle toxic CO gas.
Synthesis of Diarylethynes from Aryldiazonium Salts by Using Calcium Carbide as an Alkyne Source in a Deep Eutectic Solvent
Ma, Xiaolong,Li, Zheng
supporting information, p. 631 - 635 (2020/12/28)
An efficient method for the synthesis of diarylethynes from aryldiazonium salts by using calcium carbide as an alkyne source at room temperature in a deep eutectic solvent is described. The salient features of this protocol are an inexpensive and easy-to-handle alkyne source, a nonvolatile and recyclable solvent, mild conditions, and a simple workup procedure.
Ruthenium(ii)-catalyzed intermolecular annulation of alkenyl sulfonamides with alkynes: Access to bicyclic sultams
Qian, Lei-Lei,Min, Xiang-Ting,Hu, Yan-Cheng,Shen, Bing-Xue,Yang, Sa-Na,Wan, Boshun,Chen, Qing-An
supporting information, p. 2614 - 2617 (2020/03/10)
A ruthenium-catalyzed allylic C(sp3)-H activation strategy has been employed to develop an intermolecular coupling of alkenyl sulfonamides with alkynes. This protocol features the diastereoselective construction of [3.3.0] and [4.3.0] bicyclic sultams in one step.