Welcome to LookChem.com Sign In|Join Free

CAS

  • or

286371-64-0

Post Buying Request

286371-64-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

286371-64-0 Usage

General Description

7-Methoxy-6-benzyloxyquinazolin-4-one is a chemical compound with a quinazolin-4-one core structure that contains a methoxy group at position 7 and a benzyloxy group at position 6. 7-Methoxy-6-benzyloxyquinazolin-4-one may be used in medicinal chemistry or pharmaceutical research as a building block for the synthesis of novel pharmaceuticals or as a chemical probe in biological studies. It may also exhibit certain pharmacological properties due to its structure, such as potential anti-inflammatory, anticancer, or antimicrobial activity. The specific properties and potential applications of 7-Methoxy-6-benzyloxyquinazolin-4-one would depend on its individual characteristics and the context in which it is being utilized or studied.

Check Digit Verification of cas no

The CAS Registry Mumber 286371-64-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,8,6,3,7 and 1 respectively; the second part has 2 digits, 6 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 286371-64:
(8*2)+(7*8)+(6*6)+(5*3)+(4*7)+(3*1)+(2*6)+(1*4)=170
170 % 10 = 0
So 286371-64-0 is a valid CAS Registry Number.
InChI:InChI=1/C16H14N2O3/c1-20-14-8-13-12(16(19)18-10-17-13)7-15(14)21-9-11-5-3-2-4-6-11/h2-8,10H,9H2,1H3,(H,17,18,19)

286371-64-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 7-methoxy-6-phenylmethoxy-1H-quinazolin-4-one

1.2 Other means of identification

Product number -
Other names 7-methoxy-6-benzyloxyquinazolone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:286371-64-0 SDS

286371-64-0Relevant articles and documents

Synthesis, biological evaluation and molecular docking studies of novel 1,2,3-triazole-quinazolines as antiproliferative agents displaying ERK inhibitory activity

Nunes, Paulo Sérgio Gon?alves,da Silva, Gabriel,Nascimento, Sofia,Mantoani, Susimaire Pedersoli,de Andrade, Peterson,Bernardes, Emerson Soares,Kawano, Daniel Fábio,Leopoldino, Andreia Machado,Carvalho, Ivone

, (2021/05/26)

ERK1/2 inhibitors have attracted special attention concerning the ability of circumventing cases of innate or log-term acquired resistance to RAF and MEK kinase inhibitors. Based on the 4-aminoquinazoline pharmacophore of kinases, herein we describe the synthesis of 4-aminoquinazoline derivatives bearing a 1,2,3-triazole stable core to bridge different aromatic and heterocyclic rings using copper-catalysed azide-alkyne cycloaddition reaction (CuAAC) as a Click Chemistry strategy. The initial screening of twelve derivatives in tumoral cells (CAL-27, HN13, HGC-27, and BT-20) revealed that the most active in BT-20 cells (25a, IC50 24.6 μM and a SI of 3.25) contains a more polar side chain (sulfone). Furthermore, compound 25a promoted a significant release of lactate dehydrogenase (LDH), suggesting the induction of cell death by necrosis. In addition, this compound induced G0/G1 stalling in BT-20 cells, which was accompanied by a decrease in the S phase. Western blot analysis of the levels of p-STAT3, p-ERK, PARP, p53 and cleaved caspase-3 revealed p-ERK1/2 and p-STA3 were drastically decreased in BT-20 cells under 25a incubation, suggesting the involvement of these two kinases in the mechanisms underlying 25a-induced cell cycle arrest, besides loss of proliferation and viability of the breast cancer cell. Molecular docking simulations using the ERK-ulixertinib crystallographic complex showed compound 25a could potentially compete with ATP for binding to ERK in a slightly higher affinity than the reference ERK1/2 inhibitor. Further in silico analyses showed comparable toxicity and pharmacokinetic profiles for compound 25a in relation to ulixertinib.

Novel amide analogues of quinazoline carboxylate display selective antiproliferative activity and potent EGFR inhibition

Malhotra, Anjleena,Bansal, Ranju,Halim, Clarissa Esmeralda,Yap, Celestial T.,Sethi, Gautam,Kumar, Alan Prem,Bishnoi, Mahendra,Yadav, Kamalendra

, p. 2112 - 2122 (2020/09/23)

In the present study, a novel series of quinazoline derivatives is developed for cancer therapy. All the synthesised analogues were evaluated against a panel of 60 human cancer cell lines for the antiproliferative activity. Significant and selective growth inhibition of several solid tumour cell lines such as NCI-H322M, NCI-H522 (non-small cell lung cancer), IGROV1, SK-OV-3 (ovarian cancer), TK-10 (renal cancer) and MDA-MB-468 (breast cancer) was observed. Further, all the new amide analogues strongly inhibited EGFR in low nanomolar range with morpholino quinazoline 10 producing activity (IC50 = 6.12 nM) comparable to standard drugs erlotinib and gefitinib. In addition, western blot analysis depicted inhibition of phosphorylation of EGFR by compounds 10 and 11 in MDA-MB-468 cells at 10 μM. Molecular docking studies showed the strong binding interactions with the active site of the EGFR protein. The current investigation could be extremely helpful for the development of newer therapeutically useful quinazoline based molecules for cancer therapy.

Fluorine-containing 6,7-dialkoxybiaryl-based inhibitors for phosphodiesterase 10 A: Synthesis and in vitro evaluation of inhibitory potency, selectivity, and metabolism

Schwan, Gregor,Barbar Asskar, Ghadir,Hoefgen, Norbert,Kubicova, Lenka,Funke, Uta,Egerland, Ute,Zahn, Michael,Nieber, Karen,Scheunemann, Matthias,Straeter, Norbert,Brust, Peter,Briel, Detlef

, p. 1476 - 1487 (2014/07/21)

Based on the potent phosphodiesterase 10 A (PDE10A) inhibitor PQ-10, we synthesized 32 derivatives to determine relationships between their molecular structure and binding properties. Their roles as potential positron emission tomography (PET) ligands were evaluated, as well as their inhibitory potency toward PDE10A and other PDEs, and their metabolic stability was determined in vitro. According to our findings, halo-alkyl substituents at position 2 of the quinazoline moiety and/or halo-alkyloxy substituents at positions 6 or 7 affect not only the compounds′ affinity, but also their selectivity toward PDE10A. As a result of substituting the methoxy group for a monofluoroethoxy or difluoroethoxy group at position 6 of the quinazoline ring, the selectivity for PDE10A over PDE3A increased. The same result was obtained by 6,7-difluoride substitution on the quinoxaline moiety. Finally, fluorinated compounds (R)-7-(fluoromethoxy)-6-methoxy-4-(3-(quinoxaline-2-yloxy)pyrrolidine-1-yl) quinazoline (16 a), 19 a-d, (R)-tert-butyl-3-(6-fluoroquinoxalin-2-yloxy) pyrrolidine-1-carboxylate (29), and 35 (IC50 PDE10A 11-65 nM) showed the highest inhibitory potential. Further, fluoroethoxy substitution at position 7 of the quinazoline ring improved metabolic stability over that of the lead structure PQ-10. Fluor your health: Phosphodiesterase 10 A (PDE10A) has emerged as an attractive target for the development of 18F-labelled brain imaging agents for positron emission tomography. A series of fluorinated dialkoxybiaryl compounds were synthesized and evaluated as PDE10A inhibitors, assisted by QSAR docking studies. The 7-fluoromethoxy derivative appears to be a promising candidate for further development.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 286371-64-0