33148-47-9Relevant articles and documents
Ion-imprinted polymer for selective separation of Cerium (III) ions from rare earth mixture
Rahman, Md Lutfor,Puah, Perng Yang,Sarjadi, Mohd Sani,Arshad, Sazmal Effendi,Musta, Baba,Sarkar, Shaheen M.
, p. 5796 - 5802 (2019)
Ion-imprinting polymers (IIPs) materials draw the great recognition because of the powerful selectivity to the desired metal ions. Therefore, the ion-imprinting polymer (Ce-IIP) was prepared by using cerium metal with amidoxime ligand as the complexing agent, in addition ethylene glycol dimethacrylate (EGDMA) and 2,2-azobisisobutyronitrile (AIBN) are crosslinking agent and free radical initiator, respectively. Aqueous HCl was applied to leach the cerium ions from the imprinted polymer for the creation of cavities of template, which is utilized for further cerium ions adsorption with high selectivity. The Ce-IIP was characterized by using ICP-MS, FE-SEM and also solid state analysis by UV-vis NIR spectroscopy. FT-IR study confirmed the complexation of the Ce-IIP was successful. The optimum pH was found to be 6 and the highest adsorption capacity was estimated about 145 mg g-1. Thus, the prepared Ce-IIP gave very good selectivity to cerium ions in the presence of lanthanide ions and also Ce-IIP can be reused 10 times without a substantial loss in adsorption capacity.
Design and synthesis of C3-symmetric molecules containing oxepine and benzofuran moieties via Metathesis
Gupta, Naveen Kumar,Kotha, Sambasivarao,Solanke, Balaji. U.
, (2021/07/17)
We report a new synthetic strategy to C3-symmetric star-shaped phenyl and triazine central cores bearing oxepine and benzofuran ring systems. In this regard, we have explored the application of metathetic strategy to construct C3-sym
Nickel-catalyzed deallylation of aryl allyl ethers with hydrosilanes
Wang, Jingyang,Wang, Yu,Ding, Guangni,Wu, Xiaoyu,Yang, Liqun,Fan, Sijie,Zhang, Zhaoguo,Xie, Xiaomin
supporting information, (2021/09/28)
An efficient and mild catalytic deallylation method of aryl allyl ethers is developed, with commercially available Ni(COD)2 as catalyst precursor, simple substituted bipyridine as ligand and air-stable hydrosilanes. The process is compatible with a variety of functional groups and the desired phenol products can be obtained with excellent yields and selectivity. Besides, by detection or isolation of key intermediates, mechanism studies confirm that the deallylation undergoes η3-allylnickel intermediate pathway.
Ammonium Chloride-Promoted Rapid Synthesis of Monosubstituted Ureas under Microwave Irradiation
Lan, Chunling Blue,Auclair, Karine
supporting information, p. 5135 - 5146 (2021/10/19)
Monosubstituted ureas are important scaffolds in organic chemistry. They appear in various biologically active compounds and serve as versatile precursors in synthesis. Monosubstituted ureas were originally prepared using toxic and hazardous phosgene equivalents. Modern methods include transamidation of urea and nucleophilic addition to cyanate salts, both of which suffer from a narrow substrate scope due to the need for a strong acid and prolonged reaction times. We hereby report that ammonium chloride can promote the reaction between amines and potassium cyanate to generate monosubstituted ureas in water. This method proceeds rapidly under microwave irradiation and tolerates a broad range of functional groups. Unlike previous strategies, it is compatible with other nucleophiles, acid-labile moieties, and most of the common protecting groups. The products precipitate out of solution, allowing facile isolation without column chromatography.
Enantioselective Synthesis of 3-Fluorochromanes via Iodine(I)/Iodine(III) Catalysis
Daniliuc, Constantin G.,Gilmour, Ryan,Neufeld, Jessica,Sarie, Jér?me C.,Thiehoff, Christian
supporting information, p. 15069 - 15075 (2020/06/17)
The chromane nucleus is common to a plenum of bioactive small molecules where it is frequently oxidized at position 3. Motivated by the importance of this position in conferring efficacy, and the prominence of bioisosterism in drug discovery, an iodine(I)/iodine(III) catalysis strategy to access enantioenriched 3-fluorochromanes is disclosed (up to 7:93 e.r.). In situ generation of ArIF2 enables the direct fluorocyclization of allyl phenyl ethers to generate novel scaffolds that manifest the stereoelectronic gauche effect. Mechanistic interrogation using deuterated probes confirms a stereospecific process consistent with a type IIinv pathway.
Chemoselective Epoxidation of Allyloxybenzene by Hydrogen Peroxide Over MFI-Type Titanosilicate
Fujitani, Tadahiro,Hong, Dachao,Ito, Satoru,Ji, Xinyi,Kon, Yoshihiro,Nakashima, Takuya,Osuga, Ryota,Sato, Kazuhiko,Yokoi, Toshiyuki
supporting information, (2020/04/15)
The chemoselective synthesis of 2-(phenoxymethyl)oxirane from allyloxybenzene is achieved with over 90 % yield in a sustainable reaction system using titanium-substituted silicalite-1 (TS-1) as a catalyst, hydrogen peroxide (H2O2) as an oxidant, and a mixture of MeOH/MeCN as a solvent at 40 °C. No acid-catalyzed side reactions prompted by the Lewis acidity of the Ti active site in TS-1 are observed. The TS-1 catalyst can also promote the formation of oxiranes from various p-substituted allyloxybenzenes in good yields. The reaction mechanism is investigated through the reaction with other allyloxy compounds. The results, which are supported by DFT calculations, indicate that an active species of Ti peroxides formed from the reaction of TS-1 with H2O2 selectively oxidizes the allyloxybenzene to 2-(phenoxymethyl)oxirane.
Nitrile Synthesis by Aerobic Oxidation of Primary Amines and in situ Generated Imines from Aldehydes and Ammonium Salt with Grubbs Catalyst
Utsumi, Tatsuki,Noda, Kenta,Kawauchi, Daichi,Ueda, Hirofumi,Tokuyama, Hidetoshi
, p. 3583 - 3588 (2020/08/05)
Herein, a Grubbs-catalyzed route for the synthesis of nitriles via the aerobic oxidation of primary amines is reported. This reaction accommodates a variety of substrates, including simple primary amines, sterically hindered β,β-disubstituted amines, allylamine, benzylamines, and α-amino esters. Reaction compatibility with various functionalities is also noted, particularly with alkenes, alkynes, halogens, esters, silyl ethers, and free hydroxyl groups. The nitriles were also synthesized via the oxidation of imines generated from aldehydes and NH4OAc in situ. (Figure presented.).
Nickel-catalyzed removal of alkene protecting group of phenols, alcohols via chain walking process
Meng, Chenkai,Niu, Haolin,Ning, Juehan,Wu, Wengang,Yi, Jun
supporting information, (2020/02/04)
An efficient nickel-catalyzed removal of alkene protection group under mild condition with high functional group tolerance through chain walking process has been established. Not only phenolic ethers, but also alcoholic ethers can be tolerated with the retention of stereocenter adjacent to hydroxyl group. The new reaction brings the homoallyl group into a start of new type of protecting group.
A convenient reagent for the conversion of aldoximes into nitriles and isonitriles
Zhang, Wei,Lin, Jin-Hong,Zhang, Pengfei,Xiao, Ji-Chang
supporting information, p. 6221 - 6224 (2020/06/29)
For the dehydroxylation of aldoximes with 4-nitro-1-((trifluoromethyl)sulfonyl)-imidazole (NTSI), slight modifications of reaction conditions resulted in significantly different reaction paths to provide either nitriles or isonitriles. The challenging conversion of aldoximes into isonitriles was achieved under mild conditions.
SO 2 F 2 -Promoted Dehydration of Aldoximes: A Rapid and Simple Access to Nitriles
Ding, Chengrong,Mei, Guangyao,Wang, Haibo,Zhang, Guofu,Zhao, Yiyong
, p. 1484 - 1488 (2019/07/15)
A rapid, simple and mild process for the dehydration of aldoximes to give the corresponding nitriles, which utilizes SO 2 F 2 as an efficient reagent, has been developed. A variety of (hetero)arene, alkene, alkyne and aliphatic aldoximes proceeded with high efficiency to afford nitriles in excellent to quantitative yields with great functional group compatibilities in acetonitrile under ambient conditions. Furthermore, an eco-friendly synthetic protocol to access nitriles from aldehydes with ortho -, meta - and para -nitrile groups was also described in aqueous methanol by using inorganic base Na 2 CO 3, and a one-pot synthetic strategy to generate nitriles from aldehydes was proved to be feasible.