Welcome to LookChem.com Sign In|Join Free

CAS

  • or

33284-74-1

Post Buying Request

33284-74-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

33284-74-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 33284-74-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,3,2,8 and 4 respectively; the second part has 2 digits, 7 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 33284-74:
(7*3)+(6*3)+(5*2)+(4*8)+(3*4)+(2*7)+(1*4)=111
111 % 10 = 1
So 33284-74-1 is a valid CAS Registry Number.

33284-74-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name brittonin A

1.2 Other means of identification

Product number -
Other names 3,3',4,4',5,5,'-hexamethoxybibenzyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:33284-74-1 SDS

33284-74-1Downstream Products

33284-74-1Relevant articles and documents

Direct Hydrodecarboxylation of Aliphatic Carboxylic Acids: Metal- and Light-Free

Burns, David J.,Lee, Ai-Lan,McLean, Euan B.,Mooney, David T.

supporting information, p. 686 - 691 (2022/01/28)

A mild and inexpensive method for direct hydrodecarboxylation of aliphatic carboxylic acids has been developed. The reaction does not require metals, light, or catalysts, rendering the protocol operationally simple, easy to scale, and more sustainable. Crucially, no additional H atom source is required in most cases, while a broad substrate scope and functional group tolerance are observed.

Molybdenum-Catalyzed Deoxygenation Coupling of Lignin-Derived Alcohols for Functionalized Bibenzyl Chemicals

Jiang, Huifang,Lu, Rui,Luo, Xiaolin,Si, Xiaoqin,Xu, Jie,Lu, Fang

supporting information, p. 1292 - 1296 (2020/12/09)

With the growing demand for sustainability and reducing CO2 footprint, lignocellulosic biomass has attracted much attention as a renewable, carbon-neutral and low-cost feedstock for the production of chemicals and fuels. To realize efficient utilization of biomass resource, it is essential to selectively alter the high degree of oxygen functionality of biomass-derivates. Herein, we introduced a novel procedure to transform renewable lignin-derived alcohols to various functionalized bibenzyl chemicals. This strategy relied on a short deoxygenation coupling pathway with economical molybdenum catalyst. A well-designed H-donor experiment was performed to investigate the mechanism of this Mo-catalyzed process. It was proven that benzyl carbon-radical was the most possible intermediate to form the bibenzyl products. It was also discovered that the para methoxy and phenolic hydroxyl groups could stabilize the corresponding radical intermediates and then facilitate to selectively obtain bibenzyl products. Our research provides a promising application to produce functionalized aromatics from biomass-derived materials.

Ruthenium nanoparticle-intercalated montmorillonite clay for solvent-free alkene hydrogenation reaction

Upadhyay, Praveenkumar,Srivastava, Vivek

, p. 740 - 745 (2015/02/05)

Well-characterized, ruthenium nanoparticle-intercalated montmorillonite clay was used as a catalyst in solvent-free alkene hydrogenation reactions and the corresponding products were obtained in good yields. The catalytic activity of ruthenium nanoparticle-intercalated montmorillonite clay was successfully tested with 16 different functionalized and non-functionalized alkenes. Apart from alkene reduction, the ruthenium nanoparticle-intercalated montmorillonite clay was also tested in Wittig-type reactions for obtaining dehydrobrittonin A, an important intermediate for the synthesis of brittonin A. Ruthenium nanoparticle-intercalated montmorillonite clay was found to be active in the synthesis of dehydrobrittonin A and brittonin A. The ability to recycle the catalyst nine times, together with low catalyst loading, high catalytic activity and catalytic selectivity were noteworthy advantages of the proposed protocol.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 33284-74-1