Welcome to LookChem.com Sign In|Join Free

CAS

  • or

34240-10-3

Post Buying Request

34240-10-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

34240-10-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 34240-10-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,4,2,4 and 0 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 34240-10:
(7*3)+(6*4)+(5*2)+(4*4)+(3*0)+(2*1)+(1*0)=73
73 % 10 = 3
So 34240-10-3 is a valid CAS Registry Number.
InChI:InChI=1/C10H8O6/c1-4-2-6(9(13)14)7(10(15)16)3-5(4)8(11)12/h2-3H,1H3,(H,11,12)(H,13,14)(H,15,16)

34240-10-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 5-methyl-1,2,4-Benzenetricarboxylic acid

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:34240-10-3 SDS

34240-10-3Relevant articles and documents

PROCESS FOR PRODUCING AROMATIC POLYCARBOXYLIC ACID

-

Page/Page column 13, (2011/04/18)

A process for producing an aromatic polycarboxylic acid in which all alkyl groups are converted into carboxyl groups in a high yield by decreasing a residual amount of an intermediate product is provided. The process comprises oxygen-oxidizing an aromatic compound having a plurality of alkyl groups (e.g., durene) in the presence of a catalyst containing a cyclic imino unit having an N—OR group (wherein R represents a hydrogen atom or a protecting group for a hydroxyl group) and a transition metal co-catalyst (e.g., a cobalt compound, a manganese compound, and a zirconium compound) under heating in a lower-temperature zone and a higher-temperature zone to produce an aromatic polycarboxylic acid in which a plurality of alkyl groups are oxidized into carboxyl groups. In an initial stage of the reaction, the reaction may be conducted in a first lower-temperature zone (a reaction temperature of 60 to 120° C. and a second lower-temperature zone (an intermediate temperature zone) (a reaction temperature of 100 to 140° C.); and then, in a latter stage of the reaction, the reaction may be conducted in a higher-temperature zone (a reaction temperature of 110 to 150° C.).

The complex synergy of water in the metal/bromide autoxidation of hydrocarbons caused by benzylic bromide formation

Partenheimer, Walt

, p. 297 - 306 (2007/10/03)

One of the most active and selective catalysts in homogeneous liquid phase oxidation using molecular oxygen (O2) is a mixture of cobalt, manganese and bromide salts in acetic acid. It has been used to produce hundreds of different carboxylic acids in high yield and purity including the commercial production of terephthalic acid from p-xylene. Water is normally a by-product in these reactions and it is shown here that its concentration is an important reaction variable. In anhydrous acetic acid, with reagents with sufficiently strong electron-withdrawing substitutents (toluene, 4-carboxytoluene, 4-chlorotoluene), all of the active bromide becomes inactive via benzylic bromide formation. The Co/Mn/ Br catalyst is therefore converted to a Co/Mn catalyst which is dubbed 'catalyst failure' because of its undesirable characteristics of lower activity, decreased selectivity especially towards over-oxidation and color formation. For 4-chlorotoluene, increasing the water concentration to 5 weight % initially decreases the rate of reaction but eventually is more active and selective because the oxidation and hydrolysis of the benzylic bromide allows for sufficient active catalytic bromide. It is shown that benzylic bromides do not 'promote' the reaction and that both oxidation and solvolysis of the benzylic bromide occurs during autoxidation. During polymethylbenzene oxidation, benzylic bromide formation occurs only with the most reactive methyl group. The complex factors during metal/bromide autoxidation -some favored by increased water concentration and others detrimental - are outlined.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 34240-10-3