Welcome to LookChem.com Sign In|Join Free

CAS

  • or

35271-56-8

Post Buying Request

35271-56-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

35271-56-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 35271-56-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,5,2,7 and 1 respectively; the second part has 2 digits, 5 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 35271-56:
(7*3)+(6*5)+(5*2)+(4*7)+(3*1)+(2*5)+(1*6)=108
108 % 10 = 8
So 35271-56-8 is a valid CAS Registry Number.

35271-56-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name (E)-4-nitrocinnamyl alcohol

1.2 Other means of identification

Product number -
Other names 4-nitrocinnamyl alcohol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:35271-56-8 SDS

35271-56-8Relevant articles and documents

Oxoammonium-Mediated Allylsilane–Ether Coupling Reaction

Carlet, Federica,Bertarini, Greta,Broggini, Gianluigi,Pradal, Alexandre,Poli, Giovanni

, p. 2162 - 2168 (2021/04/02)

A new C(sp3)?H functionalization reaction consisting of the oxidative α-allylation of allyl- and benzyl- methyl ethers has been developed. The C?C coupling could be carried out under mild conditions thanks to the use of cheap and green oxoammonium salts. The scope of the reaction was studied over 27 examples, considering the nature of the substituents on the two coupling partners.

Stereodivergent Nucleophilic Additions to Racemic β-Oxo Acid Derivatives: Fast Addition Outcompetes Stereoconvergence in the Archetypal Configurationally Unstable Electrophile

Crawford, Evan T.,De Jesús Cruz, Pedro,Johnson, Jeffrey S.,Liu, Shubin

, p. 16264 - 16273 (2021/10/21)

Additions of carbon nucleophiles to racemic α-stereogenic β-oxo acid derivatives that deliver enantiomerically enriched tertiary alcohols are valuable, but uncommon. This article describes stereodivergent Cu-catalyzed borylative cyclizations of racemic β-oxo acid derivatives bearing tethered pro-nucleophilic olefins to deliver highly functionalized cyclopentanols containing four contiguous stereogenic centers. The reported protocol is applicable to a range of β-oxo acid derivatives, and the diastereomeric products are readily isolable by typical chromatographic techniques. α-Stereogenic-β-keto esters are typically thought to have extreme or spontaneous configurational fragility, but mechanistic studies for this system reveal an unusual scenario wherein productive catalysis occurs on the same time scale as background substrate racemization and completely outcompetes on-cycle epimerization, even under the basic conditions of the reaction.

Asymmetric Synthesis of Functionalized 9-Methyldecalins Using a Diphenylprolinol-Silyl-Ether-Mediated Domino Michael/Aldol Reaction

Hayashi, Yujiro,Salazar, Hugo A.,Koshino, Seitaro

, p. 6654 - 6658 (2021/09/11)

Substituted 9-methyldecalin derivatives containing an all carbon quaternary chiral center were synthesized with excellent enantioselectivity via an organocatalyst-mediated domino reaction. The first reaction is a diphenylprolinol silyl ether-mediated Michael reaction, and the second reaction is an intramolecular aldol reaction. The enantiomerically pure catalyst is involved in both reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 35271-56-8