Welcome to LookChem.com Sign In|Join Free

CAS

  • or
4-nitrocinnamyl alcohol is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

35271-56-8 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 35271-56-8 Structure
  • Basic information

    1. Product Name: 4-nitrocinnamyl alcohol
    2. Synonyms: 4-NITROCINNAMYL ALCOHOL
    3. CAS NO:35271-56-8
    4. Molecular Formula: C9H9NO3
    5. Molecular Weight: 179.17
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 35271-56-8.mol
  • Chemical Properties

    1. Melting Point: 127 °C
    2. Boiling Point: 325.3±22.0 °C(Predicted)
    3. Flash Point: N/A
    4. Appearance: /
    5. Density: 1.282±0.06 g/cm3(Predicted)
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: Chloroform, Dichloromethane, Ethyl Acetate
    9. PKA: 13.91±0.10(Predicted)
    10. CAS DataBase Reference: 4-nitrocinnamyl alcohol(CAS DataBase Reference)
    11. NIST Chemistry Reference: 4-nitrocinnamyl alcohol(35271-56-8)
    12. EPA Substance Registry System: 4-nitrocinnamyl alcohol(35271-56-8)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 35271-56-8(Hazardous Substances Data)

35271-56-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 35271-56-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,5,2,7 and 1 respectively; the second part has 2 digits, 5 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 35271-56:
(7*3)+(6*5)+(5*2)+(4*7)+(3*1)+(2*5)+(1*6)=108
108 % 10 = 8
So 35271-56-8 is a valid CAS Registry Number.

35271-56-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name (E)-4-nitrocinnamyl alcohol

1.2 Other means of identification

Product number -
Other names 4-nitrocinnamyl alcohol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:35271-56-8 SDS

35271-56-8Relevant articles and documents

Hf-MOF catalyzed Meerwein?Ponndorf?Verley (MPV) reduction reaction: Insight into reaction mechanism

Lin, Yamei,Bu, Qingxia,Xu, Jiaxian,Liu, Xiao,Zhang, Xueping,Lu, Guo-Ping,Zhou, Baojing

, (2021/01/25)

Hf-MOF-808 exhibits excellent activity and specific selectivity on the hydrogenation of carbonyl compounds via a hydrogen transfer strategy. Its superior activity than other Hf-MOFs is attributed to its poor crystallinity, defects and large specific surface area, thereby containing more Lewis acid-base sites which promote this reaction. Density functional theory (DFT) computations are performed to explore the catalytic mechanism. The results indicate that alcohol and ketone fill the defects of Hf-MOF to form a six-membered ring transition state (TS) complex, in which Hf as the center of Lewis stearic acid coordinates with the oxygen of the substrate molecule, thus effectively promoting hydrogen transfer process. Other reactive groups, such as –NO2, C = C, -CN, of inadequate hardness or large steric hindrance are difficult to coordinate with Hf, thus weakening their catalytic effect, which explains the specific selectivity Hf-MOF-808 for reducing the carbonyl group.

Copper(i) pyrimidine-2-thiolate cluster-based polymers as bifunctional visible-light-photocatalysts for chemoselective transfer hydrogenation of α,β-unsaturated carbonyls

Zhang, Meng Juan,Young, David James,Ma, Ji Long,Shao, Guo Quan

, p. 14899 - 14904 (2021/05/19)

The photoinduced chemoselective transfer hydrogenation of unsaturated carbonyls to allylic alcohols has been accomplished using cluster-based MOFs as bifunctional visible photocatalysts. Assemblies of hexanuclear clusters [Cu6(dmpymt)6] (1, Hdmpymt = 4,6-dimethylpyrimidine-2-thione) as metalloligands with CuI or (Ph3P)CuI yielded cluster-based metal organic frameworks (MOFs) {[Cu6(dmpymt)6]2[Cu2(μ-I)2]4(CuI)2}n (2), {[Cu6(dmpymt)6]2[Cu2(μ-I)2]4}n (3), respectively. Nanoparticles (NPs) of 2 and 3 served both as photosensitizers and photocatalysts for the highly chemoselective reduction of unsaturated carbonyl compounds to unsaturated alcohols with high catalytic activity under blue LED irradiation. The photocatalytic system could be reused for several cycles without any obvious loss of efficiency.

Oxoammonium-Mediated Allylsilane–Ether Coupling Reaction

Carlet, Federica,Bertarini, Greta,Broggini, Gianluigi,Pradal, Alexandre,Poli, Giovanni

, p. 2162 - 2168 (2021/04/02)

A new C(sp3)?H functionalization reaction consisting of the oxidative α-allylation of allyl- and benzyl- methyl ethers has been developed. The C?C coupling could be carried out under mild conditions thanks to the use of cheap and green oxoammonium salts. The scope of the reaction was studied over 27 examples, considering the nature of the substituents on the two coupling partners.

Regio- And diastereoselective Pd-catalyzed aminochlorocyclization of allylic carbamates: scope, derivatization, and mechanism

Ariga, Elaine Miho,Carita Correra, Thiago,Matsushima, Jullyane Emi,McIndoe, J. Scott,Moreira Ribeiro, Francisco Wanderson,Omari, Isaac,Papa Spadafora, Bruna,Rodrigues, Alessandro,Soares, Priscila Machado Arruda,Vinhato, Elisangela,de Oliveira-Silva, Diogo

, p. 5595 - 5606 (2021/07/02)

The regio- and diastereoselective synthesis of oxazolidinonesviaa Pd-catalyzed vicinal C-N/C-Cl bond-forming reaction from internal alkenes of allylic carbamates is reported. The oxazolidinones are obtained in yields of 44 to 95% with high to excellent diastereoselectivities (from 6?:?1 to >20?:?1 dr) from readily available precursors. This process is scalable, and the products are suitable for the synthesis of useful amino alcohols. A detailed theoretical and experimental mechanistic study was carried out to describe that the reaction proceeds through ananti-aminopalladation of the alkene followed by an oxidative C-Pd(ii) cleavage with retention of the carbon stereochemistry to yield the major diastereomer. The role of Cu(ii) in a C-Cl bond-forming mechanism step has also been proposed.

Stereodivergent Nucleophilic Additions to Racemic β-Oxo Acid Derivatives: Fast Addition Outcompetes Stereoconvergence in the Archetypal Configurationally Unstable Electrophile

Crawford, Evan T.,De Jesús Cruz, Pedro,Johnson, Jeffrey S.,Liu, Shubin

, p. 16264 - 16273 (2021/10/21)

Additions of carbon nucleophiles to racemic α-stereogenic β-oxo acid derivatives that deliver enantiomerically enriched tertiary alcohols are valuable, but uncommon. This article describes stereodivergent Cu-catalyzed borylative cyclizations of racemic β-oxo acid derivatives bearing tethered pro-nucleophilic olefins to deliver highly functionalized cyclopentanols containing four contiguous stereogenic centers. The reported protocol is applicable to a range of β-oxo acid derivatives, and the diastereomeric products are readily isolable by typical chromatographic techniques. α-Stereogenic-β-keto esters are typically thought to have extreme or spontaneous configurational fragility, but mechanistic studies for this system reveal an unusual scenario wherein productive catalysis occurs on the same time scale as background substrate racemization and completely outcompetes on-cycle epimerization, even under the basic conditions of the reaction.

Design, synthesis and antitumor activity evaluation of Chrysamide B derivatives

Zhu, Longqing,Li, Junfang,Fan, Xiaohong,Hu, Xiaoling,Chen, Jinhong,Liu, Yonghong,Hao, Xiangyong,Shi, Tao,Wang, Zhen,Zhao, Quanyi

, (2021/04/29)

Marine natural products derived from special or extreme environment provide an important source for the development of anti-tumor drugs due to their special skeletons and functional groups. In this study, based on our previous work on the total synthesis and structure revision of the novel marine natural product Chrysamide B, a group of its derivatives were designed, synthesized, and subsequently of which the anti-cancer activity, structure-activity relationships and cellular mechanism were explored for the first time. Compared with Chrysamide B, better anti-cancer performance of some derivatives against five human cancer cell lines (SGC-7901, MGC-803, HepG2, HCT-116, MCF-7) was observed, especially for compound b-9 on MGC-803 and SGC-7901 cells with the IC 50 values of 7.88 ± 0.81 and 10.08 ± 1.08 μM, respectively. Subsequently, cellular mechanism study suggested that compound b-9 treatment could inhibit the cellular proliferation, reduce the migration and invasion ability of cells, and induce mitochondrial-dependent apoptosis in gastric cancer MGC-803 and SGC-7901 cells. Furthermore, the mitochondrial-dependent apoptosis induced by compound b-9 is related with the JAK2/STAT3/Bcl-2 signaling pathway. To conclude, our results offer a new structure for the discovery of anti-tumor lead compounds from marine natural products.

Asymmetric Synthesis of Functionalized 9-Methyldecalins Using a Diphenylprolinol-Silyl-Ether-Mediated Domino Michael/Aldol Reaction

Hayashi, Yujiro,Salazar, Hugo A.,Koshino, Seitaro

supporting information, p. 6654 - 6658 (2021/09/11)

Substituted 9-methyldecalin derivatives containing an all carbon quaternary chiral center were synthesized with excellent enantioselectivity via an organocatalyst-mediated domino reaction. The first reaction is a diphenylprolinol silyl ether-mediated Michael reaction, and the second reaction is an intramolecular aldol reaction. The enantiomerically pure catalyst is involved in both reactions.

Catalytic Asymmetric Allylic Substitution with Copper(I) Homoenolates Generated from Cyclopropanols

Shi, Chang-Yun,Yin, Liang,Zhang, Qi,Zhou, Si-Wei

supporting information, p. 26351 - 26356 (2021/11/09)

By using copper(I) homoenolates as nucleophiles, which are generated through the ring-opening of 1-substituted cyclopropane-1-ols, a catalytic asymmetric allylic substitution with allyl phosphates is achieved in high to excellent yields with high enantioselectivity. Both 1-substituted cyclopropane-1-ols and allylic phosphates enjoy broad substrate scopes. Remarkably, various functional groups, such as ether, ester, tosylate, imide, alcohol, nitro, and carbamate are well tolerated. Moreover, the present method is nicely extended to the asymmetric construction of quaternary carbon centers. Some control experiments argue against a radical-based reaction mechanism and a catalytic cycle based on a two-electron process is proposed. Finally, the synthetic utilities of the product are showcased by means of the transformations of the terminal olefin group and the ketone group.

Biocatalytic reduction of α,β-unsaturated carboxylic acids to allylic alcohols

Aleku, Godwin A.,Leys, David,Roberts, George W.

, p. 3927 - 3939 (2020/07/09)

We have developed robust in vivo and in vitro biocatalytic systems that enable reduction of α,β-unsaturated carboxylic acids to allylic alcohols and their saturated analogues. These compounds are prevalent scaffolds in many industrial chemicals and pharmaceuticals. A substrate profiling study of a carboxylic acid reductase (CAR) investigating unexplored substrate space, such as benzo-fused (hetero)aromatic carboxylic acids and α,β-unsaturated carboxylic acids, revealed broad substrate tolerance and provided information on the reactivity patterns of these substrates. E. coli cells expressing a heterologous CAR were employed as a multi-step hydrogenation catalyst to convert a variety of α,β-unsaturated carboxylic acids to the corresponding saturated primary alcohols, affording up to >99percent conversion. This was supported by the broad substrate scope of E. coli endogenous alcohol dehydrogenase (ADH), as well as the unexpected CC bond reducing activity of E. coli cells. In addition, a broad range of benzofused (hetero)aromatic carboxylic acids were converted to the corresponding primary alcohols by the recombinant E. coli cells. An alternative one-pot in vitro two-enzyme system, consisting of CAR and glucose dehydrogenase (GDH), demonstrates promiscuous carbonyl reductase activity of GDH towards a wide range of unsaturated aldehydes. Hence, coupling CAR with a GDH-driven NADP(H) recycling system provides access to a variety of (hetero)aromatic primary alcohols and allylic alcohols from the parent carboxylates, in up to >99percent conversion. To demonstrate the applicability of these systems in preparative synthesis, we performed 100 mg scale biotransformations for the preparation of indole-3-aldehyde and 3-(naphthalen-1-yl)propan-1-ol using the whole-cell system, and cinnamyl alcohol using the in vitro system, affording up to 85percent isolated yield.

Highly Regio- A nd Enantioselective Hydrogenation of Conjugated α-Substituted Dienoic Acids

Liu, Xian,Liu, Song,Wang, Quanjun,Zhou, Gang,Yao, Lin,Ouyang, Qin,Jiang, Ru,Lan, Yu,Chen, Weiping

, p. 3149 - 3154 (2020/04/09)

Highly regio- A nd enantioselective hydrogenation of conjugated α-substituted dienoic acids was realized for the first time using Trifer-Rh complex, providing a straightforward method for the synthesis of chiral α-substituted ?,?′-unsaturated acids. DFT calculations revealed N+H-O hydrogen bonding interaction is formed to stabilize the transition state and the coordination of 4,5-double bond to Rh(III) center would facilitate the reductive elimination process. This hydrogenation provided a gram-scale synthesis of the precursor of sacubitril.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 35271-56-8