354-44-9Relevant articles and documents
SYNTHESIS OF N,N-BRANCHED SULFAMOYL FLUORIDE COMPOUNDS USING BISMUTH TRIFLUORIDE
-
Paragraph 0041-0044, (2022/03/07)
Methods of producing N,N-branched sulfamoyl fluoride compounds of the formula F-S(O)2-NR2 by contacting bismuth trifluoride with an N,N-branched sulfamoyl nonfluorohalide compound of the formula X-SO2NR2, wherein X = chlorine (C1), bromine (Br), or iodine (I), and each R is, independently, a linear or branched alkyl, fluoroalkyl, alkenyl, fluoroalkenyl, alkynyl, or fluoroalkynyl with 1 to 12 carbon atoms, to fluorinate the N,N-branched sulfamoyl nonfluorohalide compound. This is a non-aqueous method, the purity of product is very high, and the desired product can be isolated in quantitative yield. The N,N-branched sulfamoyl fluoride compounds so produced are useful in various applications including as electrolyte solvents and additives in electrochemical devices, such as lithium batteries and capacitors, and in biological fields, among others.
METHOD FOR MAKING N-(FLUOROSULFONYL) DIMETHYLAMINE
-
Paragraph 0073; 0077, (2018/06/04)
Dimethylamine (Me2NH) is reacted with sulfuryl fluoride (SO2F2) to form at least a first phase comprising N-(fluoro sulfonyl) dimethylamine (FSO2NMe2), tetramethylsulfamide (SO2(NMe2)2), or a combination thereof. A second phase, which may include dimethylamine hydrofluoride (Me2NH2F), may be also formed and separated from the first phase. FSO2NMe2 or SO2(NMe2)2 is then isolated from the first phase. For example, the first phase may be a liquid phase, and FSO2NMe2 and SO2(NMe2)2 are separated by distillation, optionally under reduced pressure.