4039-92-3Relevant articles and documents
Mechanism of solvolysis of substituted benzyl chlorides in aqueous ethanol
Denegri, Bernard,Mati?, Mirela,Va?ko, Monika
supporting information, (2021/11/22)
The mechanism of solvolyses of activated ortho-, meta- and para-substituted benzyl chlorides in aqueous ethanol has been studied by using the Hammett-Brown and Yukawa-Tsuno treatments as well as by correlating logarithms of solvolysis rate constants with relative stabilities of corresponding benzyl carbocations in water calculated at the IEFPCM-M06–2X/6-311+G(3df,3pd) level of theory. Benzyl chlorides containing strong conjugative electron-donors in the para-position solvolyze by the SN1 mechanism, whereas other activated benzyl chlorides solvolyze by the SN2 mechanism via loose transition states.
Ionic-Liquid-Supported 1,3-Dimethylimidazolidin-2-one: Application as a Reusable Halogenation Reagent
Koguchi, Shinichi,Shibuya, Yuga,Igarashi, Yusuke,Takemura, Haruka
supporting information, p. 943 - 946 (2019/05/10)
We describe the synthesis of ionic-liquid-supported 1,3-dimethylimidazolidin-2-one, together with the halogenation of alcohols in a reaction system in which this reagent is combined with oxalyl chloride. A new method was established that does not require additives such as bases, and which permits the ready isolation and purification of the product. Good conversions were obtained, and good reusability of the reagent was observed.
Halogenation through Deoxygenation of Alcohols and Aldehydes
Chen, Jia,Lin, Jin-Hong,Xiao, Ji-Chang
supporting information, p. 3061 - 3064 (2018/05/28)
An efficient reagent system, Ph3P/XCH2CH2X (X = Cl, Br, or I), was very effective for the deoxygenative halogenation (including fluorination) of alcohols (including tertiary alcohols) and aldehydes. The easily available 1,2-dihaloethanes were used as key reagents and halogen sources. The use of (EtO)3P instead of Ph3P could also realize deoxy-halogenation, allowing for a convenient purification process, as the byproduct (EtO)3Pa?O could be removed by aqueous washing. The mild reaction conditions, wide substrate scope, and wide availability of 1,2-dihaloethanes make this protocol attractive for the synthesis of halogenated compounds.
Dehydroxylation of alcohols for nucleophilic substitution
Chen, Jia,Lin, Jin-Hong,Xiao, Ji-Chang
, p. 7034 - 7037 (2018/07/05)
The Ph3P/ICH2CH2I system-promoted dehydroxylative substitution of alcohols was achieved to construct C-O, C-N, C-S and C-X (X = Cl, Br, and I) bonds. Compared with the previous approaches such as the Appel reaction and Mitsunobu reaction, this protocol offers some practical advantages such as safe operation and a convenient amination process.
Method for Producing Benzyl Ester 2-aminonicotinicotinate Derivative
-
Paragraph 0075; 0077; 0078, (2017/01/31)
The present invention refers to 2-amino nicotinic for high yield derivatives of benzil ester, provides method that produces in high yield a. Benzyl halide derivatives a predetermined base 2-amino nicotinic acid derivative polar solvent during by the pres
METHOD OF PRODUCING 2-AMINONICOTINIC ACID BENZYL ESTER DERIVATIVES
-
Paragraph 0045; 0048; 0053; 0054, (2016/11/17)
The present invention provides a method of producing a 2-aminonicotinic acid benzyl ester derivative at a high yield and with a high purity. By reacting a benzyl halide derivative with a 2-aminonicotinic acid derivative in a polar solvent in the presence of a prescribed base, it is possible to obtain a 2-aminonicotinic acid benzyl ester derivative at a high yield and with a high purity.
Sulfite formation versus chlorination of benzyl alcohols with thionyl chloride
Rodriguez, Deana A.,Priefer, Ronny
, p. 3045 - 3048 (2014/05/20)
Recently, we have reported the photolytic decay of a library of para-substituted dibenzylic sulfites in a Srinivasan-Griffin-Rayonet photochemical reactor. In an attempt to synthesize the complete library for that study we discovered that bis(p-methoxybenzyl) sulfite and bis(p-phenoxybenzyl) sulfite could not be formed and only their corresponding benzyl chlorides were synthesized. Thus, sulfite formation versus chlorination of a range of para-substituted benzyl alcohols with thionyl chloride was investigated. Sulfite formation was observed to be parabolically related to Swain and Lupton's Field ?-values while chloride formation was found to be linearly related to Swain and Lupton's Field ?-values.
PYRIDINE DERIVATIVES SUBSTITUTED BY HETEROCYCLIC RING AND PHOSPHONOAMINO GROUP, AND ANTI-FUNGAL AGENT CONTAINING SAME
-
Page/Page column 83, (2009/04/24)
Anti-fungal agent having excellent anti-fungal action physicochemical properties including safety and water solubility. Compound represented by formula (I), or salt thereof: wherein R1 represents hydrogen, halogen, amino, R11-NH- wherein R11 represents C1-6 alkyl, hydroxy C1-6 alkyl, C1-6 alkoxy C1-6 alkyl, or C1-6alkoxycarbonyl C1-6 alkyl, R12-(CO)-NH- wherein R12 represents C1-6 alkyl group or C1-6 alkoxy C1-6 alkyl, C1-6 alkyl, hydroxy C1-6 alkyl, cyano C1-6 alkyl, C1-6 alkoxy, or C1-6 alkoxy C1-6 alkyl or a phosphonoamino group; R2 represents hydrogen, C1-6 alkyl, amino, or a di C1-6 alkylamino group or a phosphonoamino group; one of X and Y is nitrogen while the other is nitrogen or oxygen; ring A represents a 5- or 6-member heteroaryl ring or a benzene ring which may have a halogen atom or 1 or 2 C1-6 alkyl groups; Z represents a single bond, a methylene group, an ethylene group, oxygen, sulfur, -CH2O-, -OCH2-, -NH-, -CH2NH-, -NHCH2-, -CH2S-, or -SCH2-; R3 represents hydrogen or halogen or C1-6 alkyl, C3-8 cycloalkyl, C6-10 aryl, a 5- or 6-member heteroaryl group or a 5- or 6-member nonaromatic heterocyclic group which may have 1 or 2 substituents; and R4 represents hydrogen or halogen; provided that either R1 or R2 represents a phosphonoamino group.
PYRIDINE DERIVATIVE SUBSTITUTED BY HETEROARYL RING, AND ANTIFUNGAL AGENT COMPRISING THE SAME
-
Page/Page column 92, (2009/06/27)
The present invention provides an antifungal agent that has excellent antifungal action, and is also excellent in terms of its properties, safety, and metabolic stability. The present invention discloses a compound represented by the following formula I or a salt thereof, and an antifungal agent comprising the compound or the salt: wherein R1 represents a hydrogen atom, a halogen atom, an amino group, a C1-6 alkyl group, a C1-6 alkoxy group, or a C1-6-alkoxy-C1-6-alkyl group; R2 represents a hydrogen atom or an amino group; X, Y, Z, and W independently represent a nitrogen atom, an oxygen atom, a sulfur atom, or -CH-, provided that at least two among X, Y, and W are nitrogen atoms; the ring A represents a 5- or 6-membered heteroaryl ring or a benzene ring; Q represents a methylene group, an oxygen atom, -CH2O-, -OCH2-, -NH-, -NHCH2-, or -CH2NH-; and R3 represents a C1-6 alkyl group, a C3-8 cycloalkyl group, a C6-10 aryl group, or a 5- or 6-membered heteroaryl group, each of which may have one or two substituents.
Heterocycles substituted pyridine derivatives and antifungal agent containing thereof
-
Page/Page column 81, (2010/11/27)
An object of the present invention is to provide an antifungal agent which has excellent antifungal effects and is superior in terms of its physical properties, safety and metabolic stability. According to the present invention, there is disclosed a compound represented by the following formula (I), or a salt thereof: wherein R1 represents a hydrogen atom, a halogen atom, an amino group, a C1-6 alkyl group, a C1-6 alkoxy group or a C1-6 alkoxy C1-6 alkyl group; R2 represents a hydrogen atom, a C1-6 alkyl group, an amino group or a di C1-6 alkylamino group; one of X and Y is a nitrogen atom while the other is a nitrogen atom or an oxygen atom; ring A represents a 5- or 6-member heteroaryl ring or a benzene ring which may have a halogen atom, or 1 or 2 C1-6 alkyl groups; Z represents a single bond, a methylene group, an ethylene group, an oxygen atom, a sulfur atom, —CH2O—, —OCH2—, —NH—, —CH2NH—, —NHCH2—, —CH2S—, or —SCH2—; R3 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C3-8 cycloalkyl group, a C6-10 aryl group, a 5- or 6-member heteroaryl group, or 5- or 6-member non-aromatic heterocyclic group which may have 1 or 2 substituents; and R4 represents a hydrogen atom or a halogen atom.