4383-06-6Relevant articles and documents
Studies in the synthesis of vernolepin. A Diels Alder approach to the angularly functionalized AB system
Danishefsky,Schuda,Kato
, p. 1081 - 1088 (1976)
-
Oxygen-Free Regioselective Biocatalytic Demethylation of Methyl-phenyl Ethers via Methyltransfer Employing Veratrol- O-demethylase
Grimm, Christopher,Lazzarotto, Mattia,Pompei, Simona,Schichler, Johanna,Richter, Nina,Farnberger, Judith E.,Fuchs, Michael,Kroutil, Wolfgang
, p. 10375 - 10380 (2020/10/02)
The cleavage of aryl methyl ethers is a common reaction in chemistry requiring rather harsh conditions; consequently, it is prone to undesired reactions and lacks regioselectivity. Nevertheless, O-demethylation of aryl methyl ethers is a tool to valorize natural and pharmaceutical compounds by deprotecting reactive hydroxyl moieties. Various oxidative enzymes are known to catalyze this reaction at the expense of molecular oxygen, which may lead in the case of phenols/catechols to undesired side reactions (e.g., oxidation, polymerization). Here an oxygen-independent demethylation via methyl transfer is presented employing a cobalamin-dependent veratrol-O-demethylase (vdmB). The biocatalytic demethylation transforms a variety of aryl methyl ethers with two functional methoxy moieties either in 1,2-position or in 1,3-position. Biocatalytic reactions enabled, for instance, the regioselective monodemethylation of substituted 3,4-dimethoxy phenol as well as the monodemethylation of 1,3,5-trimethoxybenzene. The methyltransferase vdmB was also successfully applied for the regioselective demethylation of natural compounds such as papaverine and rac-yatein. The approach presented here represents an alternative to chemical and enzymatic demethylation concepts and allows performing regioselective demethylation in the absence of oxygen under mild conditions, representing a valuable extension of the synthetic repertoire to modify pharmaceuticals and diversify natural products.
Understanding the cytotoxic effects of new isovanillin derivatives through phospholipid Langmuir monolayers
de Carvalho, Ana C.,Girola, Natália,de Figueiredo, Carlos R.,Machado, André C.,de Medeiros, Lívia S.,Guadagnin, Rafael C.,Caseli, Luciano,Veiga, Thiago A.M.
, p. 205 - 213 (2018/11/01)
Twenty-one isovanillin derivatives were prepared in order to evaluate their cytotoxic properties against the cancer cell lines B16F10-Nex2, HL-60, MCF-7, A2058 and HeLa. Among them, seven derivatives exhibited cytotoxic activity. We observed that for obtaining smaller IC50 values and for increasing the index of selectivity, two structural features are very important when compared with isovanillin (1); a hydroxymethyl group at C-1 and the replacement of the hydroxyl group at C-3 by different alkyl groups. As the lipophilicity of the compounds was changed, we decided to investigate the interaction of the cytotoxic isovallinin derivatives on cell membrane models through Langmuir monolayers by employing the lipids DPPC (1,2-diplamitoyl-sn-glycero-3-phosphocoline) and DPPS (1,2-diplamitoyl-sn-glycero-3-phosphoserine). The structural changes on the scaffold of the compounds modulated the interaction with the phospholipids at the air-water interface. These results were very important to understand the biophysical aspects related to the interaction of the cytotoxic compounds with the cancer cell membranes.