Welcome to LookChem.com Sign In|Join Free

CAS

  • or

459-44-9

Post Buying Request

459-44-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

459-44-9 Usage

General Description

4-methylbenzenediazonium tetrafluoroborate is a chemical compound that is commonly used in organic synthesis and as a reagent in various reactions. It is a tetrafluoroborate salt of the diazonium cation derived from 4-methyl aniline. The compound is highly reactive and unstable, and must be handled with care due to its potential explosive nature. It is often used in the preparation of aryl fluorides and other aromatic compounds through the process of diazonium coupling reactions. Additionally, 4-methylbenzenediazonium tetrafluoroborate has also been studied for its potential use in the development of new materials and pharmaceuticals.

Check Digit Verification of cas no

The CAS Registry Mumber 459-44-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,5 and 9 respectively; the second part has 2 digits, 4 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 459-44:
(5*4)+(4*5)+(3*9)+(2*4)+(1*4)=79
79 % 10 = 9
So 459-44-9 is a valid CAS Registry Number.
InChI:InChI=1/C7H7N2.BF4/c1-6-2-4-7(9-8)5-3-6;2-1(3,4)5/h2-5H,1H3;/q+1;-1

459-44-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-methylbenzenediazonium,tetrafluoroborate

1.2 Other means of identification

Product number -
Other names p-Methylphenyldiazonium fluoroborate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:459-44-9 SDS

459-44-9Relevant articles and documents

On-off QD switch that memorizes past recovery from quenching by diazonium salts

Liras, Marta,Gonzalez-Bejar, Maria,Scaiano

, p. 9757 - 9762 (2010)

The understanding of the interaction of CdSe/ZnS semiconductor quantum dots (QD) with their chemical environment is fundamental, yet far from being fully understood. p-Methylphenyldiazonium tetrafluoroborate has been used to get some insight into the effect of diazonium salts on the spectroscopy of QD. Our study reveals that the surface of CdSe/ZnS quantum dots can be modified by diazonium salts (although not functionalized), showing and on-off fluorescence behaviour that memorizes past quenching recoveries. Facile modification of the surface confers protection against quenching by new molecules of diazonium salt and other known quenchers such as 4-amino-TEMPO. The reaction mechanism has been explored in detail by using different spectroscopic techniques. At the first time after addition of diazonium salt over QD the fluorescent is turned off with Stern-Volmer behaviour; the fluorescence recovers following irradiation. Subsequent additions of diazonium salts do not cause the same degree of quenching. We have noted that the third addition (following two cycles of addition and irradiation) is unable to quench the fluorescence. Monitoring the process using NMR techniques reveals the formation of p-difluoroborane toluene as a result of the irradiation of diazonium-treated QD; the treatment leads to the fluorination of the QD surface.

Azoacetylenes for the Synthesis of Arylazotriazole Photoswitches

Anderl, Felix,Balkenhohl, Moritz,Carreira, Erick M.,Fink, Moritz,Pfaff, Patrick

supporting information, p. 14495 - 14501 (2021/09/18)

We report a modular approach toward novel arylazotriazole photoswitches and their photophysical characterization. Addition of lithiated TIPS-acetylene to aryldiazonium tetrafluoroborate salts gives a wide range of azoacetylenes, constituting an underexplored class of stable intermediates.In situdesilylation transiently leads to terminal arylazoacetylenes that undergo copper-catalyzed cycloadditions (CuAAC) with a diverse collection of organoazides. These include complex molecules derived from natural products or drugs, such as colchicine, taxol, tamiflu, and arachidonic acid. The arylazotriazoles display near-quantitative photoisomerization and long thermalZ-half-lives. Using the method, we introduce for the first time the design and synthesis of a diacetylene platform. It permits implementation of consecutive and diversity-oriented approaches linking two different conjugants to independently addressable acetylenes within a common photoswitchable azotriazole. This is showcased in the synthesis of several photoswitchable conjugates, with potential applications as photoPROTACs and biotin conjugates.

Irreversible tautomerization as a powerful tool to access unprecedented functional porous organic polymers with a tris(β-keto-hydrazo)cyclohexane subunit (TKH-POPs)

Liu, Xiangxiang,Luo, Xian-Sheng,Fu, Hao-Xi,Fan, Wenhao,Chen, Shi-Lu,Huang, Mu-Hua

supporting information, p. 2103 - 2106 (2020/02/26)

Porous organic polymers (POPs) have received much attention, due to their multiple potential applications and flexibility in chemical structure design. Creation of a novel chemical structure has been the central task in the research of POPs, which are usually constructed by direct coupling polymerizations. The fascinating rearrangement/tautomerization could lead to some novel structures, which are hard to access by conventional direct coupling polymerizations. Herein, the tautomerization from tris(β-hydroxyl-azo)benzene to the tris(β-keto-hydrozo)cyclohexane structure has been proved unambiguously based on an advanced 2D NMR technique such as 15N-1H-HSQC and 1H-1H-NOESY. The crucial tautomerization was used to synthesize TKH-POPs for the first time. The as-synthesized TKH-POP-1 was found to have an adsorption capacity as high as 66.3 mmol g-1 (at 273 K and P/P0 = 0.98) towards acetonitrile vapor, which was the highest among all the reported materials. The general and flexible strategy to make functional POPs with tunable pores such as ultramicropores, micropores and mesopores will help develop interesting functional POPs in the near future.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 459-44-9