Welcome to LookChem.com Sign In|Join Free

CAS

  • or

515124-12-6

Post Buying Request

515124-12-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

515124-12-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 515124-12-6 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 5,1,5,1,2 and 4 respectively; the second part has 2 digits, 1 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 515124-12:
(8*5)+(7*1)+(6*5)+(5*1)+(4*2)+(3*4)+(2*1)+(1*2)=106
106 % 10 = 6
So 515124-12-6 is a valid CAS Registry Number.

515124-12-6Downstream Products

515124-12-6Relevant articles and documents

Determining the Fate of a Non-Heme Iron Oxidation Catalyst Under Illumination, Oxygen, and Acid

Esarey, Samuel L.,Holland, Joel C.,Bartlett, Bart M.

, p. 11040 - 11049 (2016)

We analyze the stability of the non-heme water oxidation catalyst (WOC), Fe(bpmcn)Cl2 toward oxygen and illumination under nonaqueous and acidic conditions. Fe(bpmcn)Cl2 has been previously used as a C-H activation catalyst, a homogeneous WOC, and as a cocatalyst anchored to WO3 for photoelectrochemical water oxidation. This paper reports that the ligand dissociates at pH 1 with a rate constant k = 19.8(2) × 10-3 min-1, resulting in loss of catalytic activity. The combination of UV-vis experiments, 1H NMR spectroscopy, and cyclic voltammetry confirm free bpmcn and Fe2+ present in solution under acidic conditions. Even under nonaqueous conditions, both oxygen and illumination together show slow oxidation of iron over the course of a few hours, consistent with forming an Fe3+-O2- intermediate as corroborated by resonance-enhanced Raman spectroscopy, with a rate constant of k = 3.03(8) × 10-3 min-1. This finding has implications in both the merits of non-heme iron complexes as WOCs as well as cocatalysts in photoelectrochemical schemes: the decomposition mechanisms may include both anchoring group hydrolysis and instability under illumination.

Catalytic oxidation of alcohols with novel non-heme N4-tetradentate manganese(ii) complexes

Vermaak, Vincent,Young, Desmond A.,Swarts, Andrew J.

supporting information, p. 16534 - 16542 (2018/12/05)

We report the preparation and characterisation of a series of novel non-heme N4-tetradentate Mn(OTf)2 complexes of the type, [(L)MnOTf2], where L = R,R and S,S enantiomers of BPMCN, its 6-methyl and 6-bromo derivatives as well as the novel ligand BMIMCN (BPMCN = N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-(R,R/S,S)-1,2-diaminocyclohexane, BMIMCN = N,N′-dimethyl-N,N′-bis(1-methyl-2-imidazolemethyl)-(R,R/S,S)-1,2-diaminocyclohexane). Solid state structural analysis of the BMIMCN-ligated Mn-triflate complexes (R,R-C4 and S,S-C4) revealed opposite helicity but identical metal site accessibility. This feature was exploited in the catalytic oxidation of primary and secondary alcohols, with hydrogen peroxide as oxidant and acetic acid as co-catalyst. Complexes R,R-C4 and S,S-C4 displayed the highest activity in benzyl alcohol oxidation, attributed to the electron-donating property of the BMIMCN ligand. Complex S,S-C4, displayed high activity for a variety of primary alcohol substrates, but the reaction suffered from reduced selectivity and side-reactions due to the presence of acetic acid. In contrast, secondary alcohol substrates could be oxidised to the corresponding ketone products in excellent isolated yields under mild reaction conditions and short reaction times.

Manganese complexes with non-porphyrin N4 ligands as recyclable catalyst for the asymmetric epoxidation of olefins

Maity, Nabin Ch.,Kumar Bera, Prasanta,Ghosh, Debashis,Abdi, Sayed H. R.,Kureshy, Rukhsana I.,Khan, Noor-Ul H.,Bajaj, Hari C.,Suresh

, p. 208 - 217 (2014/01/06)

New chiral manganese complexes of N4 ligands derived from 2-acetylpyridine were prepared and used as catalysts in the enantioselective epoxidation of olefins, using H2O2 as an oxidant to give epoxides, with excellent conversions (up to 99%) and enantiomeric excess (up to 88%) within 1 h at 0°C. A detailed mechanistic study was undertaken based on the information obtained by single crystal X-ray, optical rotation, UV-Vis, CD spectra and kinetic studies, and revealed that the reaction is first order with respect to the concentration of catalyst and oxidant and independent of substrate concentration. The complex (0.1 mol%) was successfully subjected to recyclability experiments over 3 cycles in the epoxidation of styrene with H2O2 as an oxidant and acetic acid as an additive at 0°C with retention of performance.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 515124-12-6