5171-84-6Relevant articles and documents
Making Mercury-Ptotosensitized Dehydrodimerization into an Organic Synthetic Method: Vapor Pressure Selectivity and the Behavior of Functionalized Substrates
Brown, Stephen H.,Crabtree, Robert H.
, p. 2935 - 2946 (2007/10/02)
Mercury-photosensitized dehydrodimerization in the vapor phase can be made synthetically useful by taking advantage of a simple reflux apparatus (Figure 1), in which the products promptly condense and are protected from further conversion.This vapor pressure selectivity gives high chemical selectivity even at high conversion and on a multigram scale.Mercury absorbs 254-nm light to give the 3P1 excited state (Hg*), which homolyses a C-H bond of the substrate with a 3o>2o>1o selectivity.Quantitative prediction of product mixtures in alkane dimerization and in alkane-alkane cross-dimerizations is discussed.Radical disproportionation gives alkene, but this intermediate is recycled back into the radical pool via H atom attack, which is beneficial both for yield and selectivity.The method is very efficient at constructing C-C bonds between highly substituted carbon atoms, yet the method fails if a dimer has four sets of obligatory 1,3-syn methyl-methyl steric repulsions, as in the unknown 2,3,4,4,5,5,6,7-octamethyloctane.We have extended the range of substrates susceptible to the reaction, for example to higher alcohols, ethers, silanes, partially fluorinated alcohols, and partially fluorinated ethers.We see selectivity for dimers involving C-H bonds α to O or N and for S-H over C-H.An important advantage of our experimental conditions in the case of alcohols is that the aldehyde or ketone disproportionation product (which is not subject to H. attack) is swept out of the system by the stream of H2 also produced, so it does not remain and inhibit the rate and lower the selectivity. kdis/krec is estimated for a number of radicals studied.The very hindered 3o 1,4-dimethylcyclohex-1-yl radical is notable in having a kdis/krec as high as 7.1.
Alkane Functionalization on a Preparative Scale by Mercury-Photosensitized Cross-Dehydrodimerization
Brown, Stephen H.,Crabtree, Robert H.
, p. 2946 - 2953 (2007/10/02)
Alkanes can be functionalized with high conversions and in high chemical and quantum yields on a multigram scale by mercury-photosensitized reaction between an alkane and alcohols, ethers, or silanes to give homodimers and cross-dehydrodimers.The separation of the product mixtures is often particulary easy because of a great difference in polarity of the homodimers and cross-dimers.It is also possible to bias the product composition when the ratio of the components in the vapor phase is adjusted by altering the liquid composition.This is useful either to maximize chemical yield or to ease separation by favoring the formation of the most easily separated pair of compounds.The mechanistic basis of the reaction is discussed and a number of specific types of syntheses, for example of 2,2-disubstituted carbinols, are described in detail.The selectivity of cross-dimerization is shown to exceed that for homodimerization and reasons are discussed.Relative reactivities of different compounds and classes of compound are MeOHp-dioxanecyclohexane1,3,5-trioxacyclohexaneethanolisobutaneTHFEt3SiH.The observed selectivities generally parallel those for homodimerization, reported in the preceding paper, but certain differences are noted, and reasons for the differences are proposed.The bond-dissociation energy of Et3SiH is estimated from the reactivity data to be 90 kcal/mol.Eleven new carbinols are synthesized.