Welcome to LookChem.com Sign In|Join Free

CAS

  • or

52588-61-1

Post Buying Request

52588-61-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

52588-61-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 52588-61-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,2,5,8 and 8 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 52588-61:
(7*5)+(6*2)+(5*5)+(4*8)+(3*8)+(2*6)+(1*1)=141
141 % 10 = 1
So 52588-61-1 is a valid CAS Registry Number.

52588-61-1Relevant articles and documents

Synthesis and spectral properties of β-bromo-substituted nickel(II) tetraphenylporphyrins

Chizhova,Konakova,Mal’tseva,Mamardashvili, N. Zh.,Koifman

, p. 1094 - 1098 (2017)

Bromination of (5,10,15,20-tetraphenylporphyrinato)nickel(II) with N-bromosuccinimide in chloroform and chloroform–dimethylformamide mixture and complexation of 2-bromo-5,10,15,20-tetraphenylporphyrin and 2,3,12,13-tetrabromo-5,10,15,20-tetraphenylporphyr

Energy and electron transfer in β-alkynyl-linked porphyrin-[60] fullerene dyads

Vail, Sean A.,Schuster, David I.,Guldi, Dirk M.,Isosomppi, Marja,Tkachenko, Nikolai,Lemmetyinen, Helge,Palkar, Amit,Echegoyen, Luis,Chen, Xihua,Zhang, John Z. H.

, p. 14155 - 14166 (2008/10/09)

Three porphyrin-fullerene dyads, in which a diyne bridge links C 60 with a β-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which π-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H2TPP), the diyne-linked dyads undergo ultrafast (60 dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C60 triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP.+/C60.- charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP .+/C60.- in PhCN was ~40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (kCS) to rates for charge recombination (kCR), k CS/kCR, is quite small, ~7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C60 to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., kCS/k CR ≈ 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on kCR but not on kCS. On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the β-linked dyads.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 52588-61-1