Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5333-61-9

Post Buying Request

5333-61-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5333-61-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 5333-61-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,3,3 and 3 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 5333-61:
(6*5)+(5*3)+(4*3)+(3*3)+(2*6)+(1*1)=79
79 % 10 = 9
So 5333-61-9 is a valid CAS Registry Number.

5333-61-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-BENZYLCYCLOHEXANOL

1.2 Other means of identification

Product number -
Other names (+-)-trans-1-Benzyl-cyclohexanol-(2)

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5333-61-9 SDS

5333-61-9Relevant articles and documents

Umpolung Strategy for Arene C?H Etherification Leading to Functionalized Chromanes Enabled by I(III) N-Ligated Hypervalent Iodine Reagents

Mikhael, Myriam,Guo, Wentao,Tantillo, Dean J.,Wengryniuk, Sarah E.

supporting information, p. 4867 - 4875 (2021/09/14)

The direct formation of aryl C?O bonds via the intramolecular dehydrogenative coupling of a C?H bond and a pendant alcohol represents a powerful synthetic transformation. Herein, we report a method for intramolecular arene C?H etherification via an umpoled alcohol cyclization mediated by an I(III) N-HVI reagent. This approach provides access to functionalized chromane scaffolds from primary, secondary and tertiary alcohols via a cascade cyclization-iodonium salt formation, the latter providing a versatile functional handle for downstream derivatization. Computational studies support initial formation of an umpoled O-intermediate via I(III) ligand exchange, followed by competitive direct and spirocyclization/1,2-shift pathways. (Figure presented.).

Tuning the Product Selectivity of the α-Alkylation of Ketones with Primary Alcohols using Oxidized Titanium Nitride Photocatalysts and Visible Light

Li, Peifeng,Su, Haijia,Xiao, Gang,Zhao, Yilin

, p. 3640 - 3649 (2020/04/09)

The direct α-alkylation of ketones with alcohol to synthesize important α-alkylated ketones and enones is an attractive procedure for C-C bond formation. High reaction temperatures are always needed for heterogeneous catalysis using non-noble metals, and switching product selectivity in one catalysis system remains a great challenge. In the present study, a visible-light-driven procedure for this reaction is proposed, using oxidized TiN photocatalysts under mild conditions, whereby the product selectivity can be well-tuned. Oxidized TiN photocatalysts with tunable surface N/O ratios were successfully synthesized through the facile and flexible thermal oxidation treatment of low-cost TiN nanopowder. The α-alkylation of acetophenone with benzyl alcohol to form the two important compounds chalcone and dihydrochalcone occurred even at room temperature and almost complete conversion was achieved at 100 °C under visible light. The proportion of the two products can be well-tuned by switching the surface N/O ratio of the synthesized photocatalysts. Visible light is demonstrated to affect the surface N/O ratio of the photocatalysts and contribute to tuning the product selectivity. Light intensity and action spectrum study proves that the generation of energetic charge carriers results in the observed activities under visible light, based on interband transitions of TiN or the ligand-to-metal charge transfer (LMCT) effect of the surface complex formed on TiO2. Thermal energy can be coupled with light energy within this photocatalytic system, which will facilitate the full use of solar energy. Different sequential reaction mechanisms on TiN and TiO2 are proposed to be responsible for the tunable product selectivity. The wide reaction scope, the fine conversion at a low light intensity, and the favorable reusability of photocatalysts prove the great application potential of this visible-light-driven procedure for the α-alkylation of ketones with primary alcohols.

Piano-stool Ru (II) arene complexes that contain ethylenediamine and application in alpha-alkylation reaction of ketones with alcohols

Kavukcu, Serdar Bat?kan,Günnaz, Salih,?ahin, Onur,Türkmen, Hayati

, (2019/03/21)

A series of piano-stool Ru (II) complexes (Ru1–7) bearing ethylenediamine with aryl and aliphatic groups were prepared and fully characterized by 1H, 13C, 19F and 31P NMR spectroscopy, FT-IR and elemental analysis. The crystal structures of Ru2–4 and Ru7 were determined by X-ray crystallography. They were successfully applied to the alpha(α)-alkylation of aliphatic and aromatic ketones with alcohols via the borrowing hydrogen strategy in mild reaction conditions within a short time. The catalytic system has a broad substrate scope, which allows the synthesis of alpha alkylated ketones with excellent yields. The electronic and steric effects of complexes on catalytic activity were analysed. The influence of the carbon chain length of the ligand on the alpha-alkylation reaction of ketones was also investigated. The catalytic cycle was also examined by 1H-NMR spectroscopy in d8-toluene.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5333-61-9