Welcome to LookChem.com Sign In|Join Free

CAS

  • or

54067-17-3

Post Buying Request

54067-17-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

54067-17-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 54067-17-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,4,0,6 and 7 respectively; the second part has 2 digits, 1 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 54067-17:
(7*5)+(6*4)+(5*0)+(4*6)+(3*7)+(2*1)+(1*7)=113
113 % 10 = 3
So 54067-17-3 is a valid CAS Registry Number.

54067-17-3Relevant articles and documents

A Lewis Base Nucleofugality Parameter, NFB, and Its Application in an Analysis of MIDA-Boronate Hydrolysis Kinetics

Taylor, Nicholas P.,Gonzalez, Jorge A.,Nichol, Gary S.,García-Domínguez, Andrés,Leach, Andrew G.,Lloyd-Jones, Guy C.

supporting information, p. 721 - 729 (2022/01/04)

The kinetics of quinuclidine displacement of BH3 from a wide range of Lewis base borane adducts have been measured. Parameterization of these rates has enabled the development of a nucleofugality scale (NFB), shown to quantify and predict the leaving group ability of a range of other Lewis bases. Additivity observed across a number of series R′3-nRnX (X = P, N; R′ = aryl, alkyl) has allowed the formulation of related substituent parameters (nfPB, nfAB), providing a means of calculating NFB values for a range of Lewis bases that extends far beyond those experimentally derived. The utility of the nucleofugality parameter is explored by the correlation of the substituent parameter nfPB with the hydrolyses rates of a series of alkyl and aryl MIDA boronates under neutral conditions. This has allowed the identification of MIDA boronates with heteroatoms proximal to the reacting center, showing unusual kinetic lability or stability to hydrolysis.

Effectiveness and Mechanism of the Ene(amido) Group in Activating Iron for the Catalytic Asymmetric Transfer Hydrogenation of Ketones

Xue, Qingquan,Wu, Rongliang,Wang, Di,Zhu, Meifang,Zuo, Weiwei

, p. 134 - 147 (2021/02/05)

I-interacting ligands of the diphosphino amido-ene(amido) type are effective in activating iron to resemble the properties of precious metals in the catalytic asymmetric transfer hydrogenation of ketones. To further verify the effectiveness of the ene(amido) group, we synthesized four amine(imine) diphosphine iron precatalyst complexes with substituents at α and β positions relative to imino groups (1-3) or with enlarged chelate ring sizes (5,5,6-membered rings) (4). In comparison with the parent trans-(R,R)-[Fe(CO)(Cl)(PPh2CH2CHaNCHPhCHPhNHCH2CH2PPh2)]BF4 (I), the introduction of a methyl group in 1 and 2 reduced the catalytic activity but led to undiminished enantioselectivity as reaction proceeded. In comparison to the iron complexes 1-3 with a 5,5,5-coordination geometry, the complex 4 derived from the new (R,R)-P-NH-NH2 tridentate ligand showed high reactivity comparable to that of I but was unfortunately not enantioselective. The catalytic reactivity of 1, 2, and 4 illustrates the effectiveness of the ene(amido) group. An electronic structure study on the important catalytic intermediate amido-ene(amido) complex 1b proved that iron was activated by an additional I-back-donation-interaction ligand to participate in the traditional metal-ligand bifunctional pathway in the asymmetric transfer hydrogenation reactions.

Br?nsted Acid Promoted Reduction of Tertiary Phosphine Oxides

Krachko, Tetiana,Lyaskovskyy, Volodymyr,Lutz, Martin,Lammertsma, Koop,Slootweg, J. Chris

, p. 916 - 921 (2017/08/11)

Recently, Br?nsted acids, such as phosphoric acids, carboxylic acids, and triflic acid, were found to catalyze the reduction of phosphine oxides to the corresponding phosphines. In this study, we fully characterize the HCl, HOTf, and Me2SiHOTf adducts of triphenylphosphine oxide and find that the thermally stable adduct Ph3POH+OTf– is efficiently converted into triphenylphosphine at 100 °C in the presence of readily available hydrosiloxanes. Under the same reaction conditions, also Ph3POSiMe2H+OTf– selectively affords triphenylphosphine indicating that silylated phosphine oxides are likely intermediates in this process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 54067-17-3